Основные приемы гибки деталей из труб
Гибку деталей из труб производят в холодном и горячем состояниях ручным и механизированным способами, с наполнителями и без наполнителей.
Наполнители применяют для исключения образования складок и сплющивания стенок труб. В качестве наполнителей используется просушенный мелкий песок или синтетические гранулы.
Для каждой трубы в зависимости от ее диаметра и материала установлен минимально допустимый радиус гибки. При меньшем радиусе гибка недопустима (табл. 1).
Таблица 1. Значения минимально допустимых радиусов гибки труб в холодном состоянии, мм
Наружный диаметр трубы, мм | Материал трубы | Наружный диаметр трубы, мм | Материал трубы | ||||||
Сталь 45 | Сталь 35 | Сталь 20 | Сталь 10 | Сталь 45 | Сталь 35 | Сталь 20 | Сталь 10 | ||
18 | 74 | 62 | 56 | 43 | 105 | 450 | 344 | 282 | 240 |
24 | 95 | 79 | 65 | 55 | 110 | 510 | 377 | 310 | 264 |
32 | 115 | 96 | 79 | 67 | 130 | 536 | 450 | 370 | 315 |
38 | 156 | 131 | 107 | 91 | 145 | 578 | 484 | 398 | 339 |
50 | 197 | 165 | 136 | 115 | 155 | 620 | 522 | 430 | 360 |
60 | 238 | 199 | 165 | 139 | 181 | 720 | 600 | 498 | 425 |
75 | 280 | 260 | 194 | 173 | 194 | 752 | 630 | 516 | 444 |
80 | 324 | 270 | 224 | 190 | 206 | 835 | 702 | 575 | 488 |
90 | 362 | 302 | 250 | 213 | 220 | 920 | 770 | 635 | 540 |
При гибке в холодном состоянии труб диаметром до 25 мм применяются ручные приспособления.
На рис. 4, а показан ручной станок, предназначенный для гибки труб диаметром от 12 до 20 мм. Станок имеет ось 1 и опорную плиту 2, с помощью которых он крепится болтами к верстаку. Рабочими органами станка являются неподвижный ролик 4 с хомутиком 5, укрепленный на оси 1, и подвижный ролик 3, закрепленный на скобе 6 с рукояткой 7.
Рис. 4. Гибка на ручных приспособлениях
Для гибки медных трубок разных диаметров при сборке машин применяют многоручьевой трубогиб (5.66, б). В этом случае трубку пропускают между роликами 1 и 2 до соприкосновения с упором, затем при повороте вилки 3 подвижный ролик 2 обкатывается вокруг неподвижного, изгибая трубку по радиусу, равному радиусу ролика 1.
С помощью ручного рычажного трубогиба (5.66, в) можно изгибать стальные газовые трубы диаметром 1/2 , 3/4 и 1» в холодном состоянии без наполнителя.
Для ручной гибки стальных труб диаметром до 50 мм на угол 180° без наполнителя в холодном состоянии может использоваться специальная головка с ручным приводом.
Основные приемы гибки деталей из полосы
При гибке деталей вручную необходимо учитывать, что в зависимости от свойств материала, толщины и размеров заготовки из полосы необходимо прикладывать различные усилия для выполнения работы. Поэтому необходимо учитывать, что:
- при гибке деталей из тонкого листового пластичного материала, толщиной 0,2 мм и менее, на поверхности деталей могут оставаться следы от ударов молотком, поэтому целесообразно при гибке использовать подкладки из деревянных брусков, отрезков стальной полосы или бруска и т.п., в некоторых случаях эта работа может быть выполнена без молотка, а обжатием заготовки вручную с использованием подкладок;
- при гибке деталей из тонкого листового пластичного материала, толщиной 0,2–0,5 мм, применяют легкие молотки, подкладки из цветного металла, из отрезков стальной полосы или бруска и т.п.;
- для деталей из листового материала, толщиной 3,0 мм и более, для предварительной гибки применяют более тяжелые молотки (кувалды — для материала толщиной 8 мм и более), а более легкие молотки для окончательной гибки и правки деталей после гибки;
- при ручной гибке в зависимости от усилий, которые прилагают для гибки заготовок, выбирают менее или более тяжелые тиски;
- при ручной гибке с увеличением толщины металла возрастают усилия, с которыми необходимо зажимать заготовку в тисках. В результате на поверхности заготовок каленые губки тисков оставляют следы рифления накладок губок, что портит внешний вид деталей. Поэтому при закреплении заготовок в тисках используют подкладки из цветного металла, мягкой стали и т.п.;
- при ручной гибке симметричных деталей возможно смещение оси симметрии по длине заготовки, поэтому целесообразно по концам заготовки симметрично оставить припуск, который удаляют по окончании гибки;
- при гибке коротких полок (например, у хомутиков из материала толщиной 4–6 мм), которые меньше ширины бойка молотка, целесообразно по концам заготовки симметрично оставить припуск, который удаляют по окончании гибки.
Гибку деталей выполняют по образцу готовой детали, либо по образцу-макету, который более удобен для работы.
Для выполнения макета рабочий вычерчивает на листе бумаги или на листе металла (чертилкой) профиль детали в натуральную величину, который нужно будет согнуть. Затем из проволоки или тонкой полосы при помощи плоскогубцев по рисунку сгибают контур профиля детали (с учетом радиусов и углов наклона плоскостей).
Для гибки детали подбирают оправки с минимальным радиусом гибки и с радиусами, которыми должны соединяться прямолинейные участки детали.
На заготовке детали чертилкой размечают линии, по которым будут производить гибку.
При выполнении гибки полок заготовку 1 (рис. 3, а) зажимают в тиски между двумя оправками 2 и 3 так, чтобы линия гибки была обращена в сторону загиба, на уровне верхней кромки оправки 3. Молотком ударяют по верхней полке детали 1. Ударять молотком нужно равномерно всей поверхностью бойка.
Рис. 3. Гибка заготовки детали в тисках: а — под углом; б — по радиусу
Угол наклона полки проверяют, прикладывая шаблон к вертикальной грани детали 1. Грань оправки 3, на которой производится гибка заготовки, должна быть запилена по радиусу больше критического для данной толщины заготовки.
При выполнении гибки по радиусу заготовку 1 (рис. 3, б) зажимают в тиски между губкой и оправкой 2 так, чтобы линия гибки была обращена в сторону загиба и выступала над образующей оправки 2 на величину А мм, если необходимо, чтобы полки были равной длины.
где r — радиус оправки.
Направление ударов молотком показано стрелками.
Для гибки заготовок из листового материала применяются ручные листогибочные машины и машины с механическим приводом. Принцип работы заключается в том, что на столе машины прижимом закрепляется заготовка, которая выставляется местом изгиба относительно прижима.
51а. минимальные радиусы гибаr угловой равнополочной стали, мм
Материал — сталь Ст3
В числителе приведены значения радиуса гибаRугловой стали полкой наружу, в знаменателе — полкой внутрь.
Толщина пачки, мм | Номер профиля | |||||||||||||
2 | 2,5 | 3,2 | 3,6 | 4 | 4,5 | 5 | 5,6 | 6,3 | 7 | 7,5 | 8 | 9 | 10 | |
3 | 100/120 | 125/150 | — | — | — | — | — | — | — | — | — | — | — | — |
4 | — | 125/150 | 160/200 | 180/220 | 200/240 | 221/270 | 250/300 | 280/340 | 315/380 | — | — | — | — | — |
4,5 | — | — | — | — | — | — | — | — | — | 350/420 | — | — | — | — |
5 | — | — | — | — | — | — | 250/300 | 280/340 | 315/380 | 350/420 | 375/450 | — | ||
5,5 | — | — | — | — | — | — | — | — | — | — | — | 400/480 | — | — |
6 | — | — | — | — | — | — | — | — | 315/380 | 350/420 | 211/450 | 400/480 | 450/540 | — |
6,5 | — | — | — | — | — | — | — | — | — | — | — | — | 500/600 | |
7 | — | — | — | — | — | — | — | — | — | 420/350 | 450/375 | 480/400 | 540/450 | — |
8 | — | — | — | — | — | — | — | — | — | 480/400 | 540/450 | 600/500 | ||
9 | — | — | — | — | — | — | — | — | — | — | 450/375 | — | — | — |
10 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600/500 |
12 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600/500 |
51в. минимальный радиус гибаr угловой неравнополочной стали большой полкой наружу, мм
Материал — сталь Ст3
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 160 | 225 | 250 | — | — | — | — | — |
5 | — | — | — | — | 375 | — | — | — |
5,5 | — | — | — | — | — | — | 450 | — |
6 | — | — | — | 315 | 375 | 400 | — | 500 |
7 | — | — | — | — | — | — | — | 500 |
8 | — | — | — | 315 | — | — | 450 | 500 |
10 | — | — | — | — | — | — | — | 500 |
51г. минимальный радиус гибаr угловой неравнополочной стали меньшей полкой внутрь, мм
Материал — сталь Ст3
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7.5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 120 | 170 | 195 | — | — | — | — | — |
5 | — | — | — | — | 300 | — | — | — |
5,5 | — | — | — | — | — | — | 340 | — |
6 | — | — | — | 240 | 300 | 300 | — | 380 |
7 | — | — | — | — | — | — | — | 380 |
8 | — | — | — | 240 | — | — | 340 | 380 |
10 | — | — | — | — | — | — | — | 380 |
51д. минимальный радиус гибаr угловой неравнополочной стали большей полкой внутрь, мм
Материал — сталь Ст3
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 195 | 270 | 300 | — | — | — | — | — |
5 | — | — | — | — | 450 | — | — | — |
5,5 | — | — | — | — | — | — | 545 | — |
6 | — | — | — | 380 | 450 | 480 | — | 600 |
7 | — | — | — | — | — | — | — | 600 |
8 | — | — | — | 380 | — | — | 545 | 600 |
10 | — | — | — | — | — | — | — | 600 |
Not found
49.Минимальный радиус R гиба листового проката, мм
Материал | Расположения линии гиба проката в состоянии | |||
отожженном или нормализованном | наклепанном | |||
поперек волокон | вдоль волокон | поперек волокон | вдоль волокон | |
Сталь: СтЗ 20 45 коррозионно-стойкая | 1S | 2S 1.5S 2.6S 2S 3S | 4S | |
Алюминий и его сплавы: мягкие твердые | 1S 1S | 1,55 35 | 1,55 35 | 2,55 45 |
Медь | — | 15 | 15 | 25 |
Латунь: мягкая твердая | — — | 0,85 4,55 | 0,85 4,55 | 0,85 4,55 |
Развернутая длина изогнутого участка детали из листового материала при гибе на угол a определяется по формуле
А=p(R KS)a/180где А —
длина нейтральной линии;R —внутренний радиус гиба;К —коэффициент, определяющий положение нейтрального слоя при гибе (табл.50);S — толщина листового материала, ммПримечание.Минимальные радиусы холодной гибки заготовок устанавливаются по предельно допустимым деформациям крайних волокон. Их применяют только в случае конструктивной необходимости, во всех остальных случаях — увеличенные радиусы гиба.
50. Значение коэффициента К
Минимальный радиус гиба R, мм | Толщина проката S, мм | ||||||||||
0,5 | 1 | 1.5 | 2 | 2,5 | 3 | 4 | 5 | 6 | 8 | 10 | |
1 | 0,375 | 0,350 | — | — | — | — | — | — | — | — | — |
2 | 0,415 | 0,375 | 0,357 | 0,350 | — | — | — | — | — | — | — |
3 | 0,439 | 0,398 | 0,375 | 0,362 | 0,355 | 0,350 | — | — | — | — | — |
4 | 0,459 | 0,415 | 0,391 | 0,374 | 0,365 | 0,360 | 0,358 | — | — | — | — |
5 | 0,471 | 0,428 | 0,404 | 0,386 | 0,375 | 0,367 | 0,357 | 0,350 | — | — | — |
6 | 0,480 | 0,440 | 0,415 | 0,398 | 0,385 | 0,375 | 0,363 | 0,355 | 0,350 | — | — |
8 | 0,459 | 0,433 | 0,415 | 0,403 | 0,391 | 0,375 | 0,365 | 0,358 | 0,350 | — | |
10 | 0,500 | 0,470 | 0,447 | 0,429 | 0,416 | 0,405 | 0,387 | 0,375 | 0,366 | 0,356 | 0,350 |
12 | 0,480 | 0,459 | 0,440 | 0,427 | 0,416 | 0,399 | 0,385 | 0,375 | 0,362 | 0,355 | |
16 | 0,500 | — | 0,473 | 0,459 | 0,444 | 0,433 | 0,416 | 0,403 | 0,392 | 0,375 | 0,365 |
20 | 0,500 | — | 0,470 | 0,459 | 0,447 | 0,430 | 0,415 | 0,405 | 0,388 | 0,375 | |
25 | — | — | 0,500 | — | 0,470 | 0,460 | 0,443 | 0,430 | 0,417 | 0,402 | 0,387 |
28 | — | — | — | 0,500 | 0,476 | 0,466 | 0,450 | 0,436 | 0,425 | 0,408 | 0,395 |
30 | — | — | — | — | 0,480 | 0,470 | 0,455 | 0,440 | 0,430 | 0,412 | 0,400 |
51. Минимальный радиус гиба металлов круглого и квадратного сечений, мм
Диаметр круга d или сторона квадрата a | Ст3 | Ст5 | Сталь 20 | Сталь 45 | Сталь 12Х18Н10Т | Л63 | М1, М2 | |||
R1 | R2 | R1 | R1 | R2 | R1 | R2 | R1 | |||
5 | — | — | — | — | — | — | — | — | 2 | — |
6 | — | — | — | 2 | — | — | — | — | 2 | 2 |
8 | 3 | — | — | 3 | — | 5 | — | 7 | 2 | 2 |
10 | 8 | 10 | — | 8 | 10 | 10 | — | 8 | 6 | 6 |
12 | 10 | 12 | 13 | 10 | 12 | 13 | — | 10 | 6 | 6 |
14 | 10 | 14 | 14 | 10 | 14 | 16 | — | 11 | — | — |
16 | 13 | 16 | 16 | 13 | 16 | 16 | 16 | 13 | 10 | 10 |
18 | 16 | — | 18 | — | — | 18 | — | 14 | — | 10 |
20 | 16 | 20 | 20 | 16 | 20 | 20 | 20 | 16 | 13 | 13 |
22 | 18 | — | 22 | 18 | — | 22 | — | 18 | — | 13 |
25 | 20 | 25 | 25 | — | 25 | 25 | 25 | 20 | 16 | 16 |
28 | — | — | — | 22 | — | 30 | — | 22 | — | 16 |
30 | 25 | 30 | 30 | 25 | 30 | 30 | 30 | 24 | 18 | 18 |
51а. Минимальные радиусы гиба R
угловой равнополочной стали, мм
Материал — сталь Ст3 В числителе приведены значения радиуса гиба R угловой стали полкой наружу, в знаменателе — полкой внутрь |
Толщина полки, мм | Номер профиля | |||||||||||||
2 | 2,5 | 3,2 | 3,6 | 4 | 4,5 | 5 | 5,6 | 6,3 | 7 | 7,5 | 8 | 9 | 10 | |
3 | 100120 | 125150 | — | — | — | — | — | — | — | — | — | — | — | — |
4 | — | 125 150 | 160 200 | 180 220 | 200 240 | 225 270 | 250 300 | 280 340 | 315 380 | — | — | — | — | — |
4,5 | — | — | — | — | — | — | — | — | — | 250 420 | — | — | — | — |
5 | — | — | — | — | — | — | 250 300 | 280 340 | 315 380 | 350 420 | 375 450 | — | — | — |
5,5 | — | — | — | — | — | — | — | — | — | — | — | 400 480 | — | — |
6 | — | — | — | — | — | — | — | — | 315 380 | 350 420 | 375 450 | 400 480 | 450 540 | — |
6,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | 500 600 |
7 | — | — | — | — | — | — | — | — | — | 420 350 | 450 375 | 480 400 | 540 450 | — |
8 | — | — | — | — | — | — | — | — | — | — | — | 480400 | 540 450 | 600 500 |
9 | — | — | — | — | — | — | — | — | — | — | 450 375 | — | — | — |
10 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600 500 |
12 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600 500 |
51б. Минимальный радиус гиба R угловой неравнополочной стали меньшей полкой наружу, мм
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 100 | 140 | 160 | — | — | — | — | — |
5 | — | — | — | — | 250 | — | — | — |
5,5 | — | — | — | — | — | — | 280 | — |
6 | — | — | — | 200 | 250 | 250 | — | 315 |
7 | — | — | — | — | — | — | — | 315 |
8 | — | — | — | 200 | — | — | 280 | 315 |
10 | — | — | — | — | — | — | — | 315 |
51в. Минимальный радиус гиба R угловой неравнополочной стали большой полкой наружу, мм
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 160 | 225 | 250 | — | — | — | — | — |
5 | — | — | — | — | 375 | — | — | — |
5,5 | — | — | — | — | — | — | 450 | — |
6 | — | — | — | 315 | 375 | 400 | — | 500 |
7 | — | — | — | — | — | — | — | 500 |
8 | — | — | — | 315 | — | — | 450 | 500 |
10 | — | — | — | — | — | — | — | 500 |
51г. Минимальный радиус гиба К
угловой неравнополочной стали меньшей полкой внутрь, мм
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 120 | 170 | 195 | — | — | — | — | — |
5 | — | — | — | — | 300 | — | — | — |
5,5 | — | — | — | — | — | — | 340 | — |
6 | — | — | — | 240 | 300 | 300 | — | 380 |
7 | — | — | — | — | — | — | — | 380 |
8 | — | — | — | 240 | — | — | 340 | 380 |
10 | — | — | — | — | — | — | — | 380 |
51д. Минимальный радиус гиба R
угловой неравнополочной стали большей полкой внутрь, ми
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 195 | 270 | 300 | — | — | — | — | — |
5 | — | — | — | — | 450 | — | — | — |
5,5 | — | — | — | — | — | — | 545 | — |
6 | — | — | — | 380 | 450 | 480 | — | 600 |
7 | — | — | — | — | — | — | — | 600 |
8 | — | — | — | 380 | — | — | 545 | 600 |
10ы | — | — | — | — | — | — | — | 600 |
51е. Минимальный радиус гиба двутавровой балки, мм (материал — сталь ВСтЗ)
Номер профиля | 10 | 12 | 14 | 16 | 18 | 20 | |
Минимальный радиус гиба R, мм | 250 | 300 | 350 | 400 | 450 | 500 |
51 ж. Минимальный радиус гиба швеллера, мм
Номер профиля | 5П | б,5П | 8П | 10П | 12П | 14П | 16П | 18П | 20П |
Минимальный радиус гиба R, мм | 225 | 250 | 275 | 300 | 325 | 350 | 400 | 435 | 450 |
52. Разделка угловой стали при гибке
Размеры, мм
При свободной гибке уголка полкой: наружу rmin=25h; внутрь rmin=30h; где h-ширина полки в плоскости гиба,мм |
Размеры профиля | r | Угол гибки a, градусы | |||||||||||||||
30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | ||||||||||
l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | ||
20х20х3 | 3 | 9 | 2 | 14 | 4 | 20 | 5 | 26 | 6 | 34 | 7 | 44 | 8 | 59 | 9 | 82 | 11 |
25х25х4 32х32х4 36х36х4 40х40х4 45х45х4 50х50х4 | 4 | 11 15 17 20 22 25 | 3 | 17 23 27 30 34 38 | 5 | 22 32 37 42 48 53 | 6 | 32 43 49 55 63 71 | 8 | 42 56 64 72 82 92 | 10 | 55 73 84 94 107 120 | 11 | 73 97 111 125 142 160 | 13 | 102 135 155 174 198 222 | 15 |
63х63х6 75х75х6 | 6 | 31 37 | 4 | 48 58 | 6 | 66 80 | 9 | 88 106 | 10 | 114 138 | 13 | 149 180 | 15 | 198 239 | 17 | 275 333 | 20 |
Вычисление изгиба
Важно учесть, что при разработке развертки, необходимо сделать вычет из желаемого размера детали, чтобы получить правильный размер развертки. Уменьшение изгиба определяется как материал, который придется удалить из общей длины сгибов, чтобы получить развертку. Чтобы произвести расчет нужно переписать предыдущее уравнение как:
Начальная длина = длина первого участка допуск на изгиб длина второго участка.
Начальная длина = (длина сгиба 1 – внешний отступ) допуск на изгиб (длина сгиба 2 — внешний отступ)
Начальная длина = длина фланца 1 длина фланца 2 — (2 * внешний отступ — допуск на изгиб)
Вычет изгиба (BD) – представляет собой разницу между допуском изгиба и удвоенным внешним отступом.
Вычет изгиба (BD) = 2* внешний отступ- допуск на изгиб.
Изгиб
Допуск на изгиб и уменьшение изгиба можно рассчитать с использованием коэффициента К следующим образом:
Источник
Допуск на изгиб (ва)
Допуск на изгиб (ВА) — длина дуги изгиба, измеренная вдоль нейтральной оси материала. Понимание допуска на изгиб и, следовательно, уменьшения изгиба детали — важный первый шаг к пониманию того, как изготавливаются детали из листового металла.
Когда листовой металл подвергается процессу изгиба, металл вокруг изгиба деформируется и растягивается. По мере того, как это происходит, получается небольшая общая длина части листа. Допуск на изгиб определяется как материал, который нужно будет добавить к начальной длине плоского листа, чтобы получить длину формованной детали.
Начальная длина = длина первого участка допуск на изгиб длина второго участка.
Рисунок 2: Допуск на изгиб
Зачем гнут листовой металл по радиусу
Для придания заготовке необходимой формы, учитывающей ее рельефную модификацию (в т. ч. углы и скругления) принято использовать радиусную гибку листового металла. Это упорядоченный процесс, поэтому, когда требуется использование сразу нескольких гибов, каждый элемент обрабатывается последовательно до тех пор, пока не будет достигнута нужная конфигурация.
Такая технология применяется для придания формы:
- листовым профилям;
- уличным карнизам и козырькам;
- подвесным элементам фасада зданий;
- металлическим комплектующим мебели;
- декоративным элементам интерьера и т. д.
Сферические, цилиндрические и конусовидные детали, выполненные из гнутого листового металла или металлопрофиля, пользуются большим спросом в котельном производстве.
Гибка по радиусу может потребоваться в бытовых строительных и ремонтных работах, например, при проведении труб. Не стоит пытаться проделать такую операцию в домашних условиях – для этого нужен специальный станок. Благодаря современным технологиям можно подобрать оптимальные параметры работы с заготовками разного состава листового металла, толщины и формы. Радиус изгиба получается точным и качественным, а материал при этом не теряет свои прочностные характеристики.
Рекомендовано к прочтению
- Резка меди лазером: преимущества и недостатки технологии
- Виды резки металла: промышленное применение
- Металлообработка по чертежам: удобно и выгодно
Разумеется, существуют и другие способы придания листам нужной конфигурации радиуса: сварка, клепка или резка. Но гибка имеет перед ними целый ряд преимуществ:
- отсутствие швов и стыковки, что гарантирует естественную прочность металла;
- стойкость к окислению, коррозии и др. благодаря целостной структуре листовой заготовки;
- экономичность и отсутствие производственных отходов;
- сохранение эстетичности исходника.
Существует несколько видов радиусной гибки листового металла, которые подбираются индивидуально в каждом случае (в зависимости от технических характеристик исходника и особенностей желаемого результата). Остановимся подробней на каждом из них.
Значение коэффициента к
Минимальный радиус гибаR, мм | Толщина проката S, мм | ||||||||||
0,5 | 1 | 1,5 | 2 | 2,5 | 3 | 4 | 5 | 6 | 8 | 10 | |
1 | 0,375 | 0,350 | — | — | — | — | — | — | — | — | — |
2 | 0,415 | 0,375 | 0,357 | 0.350 | — | — | — | — | — | — | — |
3 | 0,439 | 0,398 | 0,375 | 0,362 | 0,355 | 0,350 | — | — | — | — | — |
4 | 0,459 | 0,415 | 0,391 | 0,374 | 0,365 | 0,360 | 0,358 | — | — | — | — |
5 | 0,471 | 0,428 | 0,404 | 0,386 | 0,375 | 0,367 | 0,357 | 0,350 | — | — | — |
6 | 0,480 | 0,440 | 0,415 | 0,398 | 0,385 | 0,375 | 0,363 | 0,355 | 0,350 | — | — |
8 | — | 0,459 | 0,433 | 0,415 | 0,403 | 0,391 | 0,375 | 0,365 | 0,358 | 0,350 | — |
10 | 0,500 | 0,470 | 0,447 | 0,429 | 0,416 | 0,405 | 0,387 | 0,375 | 0,366 | 0,356 | 0,350 |
12 | — | 0,480 | 0,459 | 0,440 | 0,427 | 0,416 | 0,399 | 0,385 | 0,375 | 0,362 | 0,355 |
16 | 0,500 | — | 0,473 | 0,459 | 0,444 | 0,433 | 0,416 | 0,403 | 0,392 | 0,375 | 0,365 |
20 | — | 0,500 | — | 0,470 | 0,459 | 0,447 | 0,430 | 0,415 | 0,405 | 0,388 | 0,375 |
25 | — | — | 0,500 | — | 0,470 | 0,460 | 0,443 | 0,430 | 0,417 | 0,402 | 0,387 |
28 | — | — | — | 0,500 | 0,476 | 0,466 | 0,450 | 0,436 | 0,425 | 0,408 | 0,395 |
30 | — | — | — | — | 0,480 | 0,470 | 0,455 | 0,440 | 0,430 | 0,412 | 0,400 |
Калькулятор параметров и усилия гибки
Базовые параметры:
S – толщина материала в мм, задается пользователем
α – угол гибки в градусах, задается пользователем
V – открытие матрицы в мм, V=значение, формируемый параметр
h – мининимальная длина полки в мм, формируемый параметр
Ri – мининимальная радиус гибки в мм, формируемый параметр
F – тоннаж листогибочного пресса для гибки заданной толщины по матрице в тоннах, фомируется общий тоннаж в зависимости от заданной длины гибки в мм (параметр L)
Коэффициент положения нейтральной линии при гибке
Для начала вспомним основные понятия
Теперь определимся с самым загадочным понятием – допуск. Чтобы с этим разобраться, нам пригодится значение коэффициента положения нейтральной линии – в отечественной литературе этот коэффициент обозначается, как правило, просто буквой x или к, в европейской же это значение называется К-фактор.
Останавливаюсь так подробно на названии потому, что в некоторых гибочных станках европейского производства или CAD-программах вы можете встретить это понятие (К-фактор) – теперь вы к этому готовы. Если уж быть до конца честным, еще вы можете встретить Y-фактор = К-фактор * Пи/2.
Итак, вернемся к теории.
Коэффициент x, k или К-фактор – это отношение глубины расположения нейтральной линии (t) к толщине металла (T).
На этом этапе резонно встает вопрос – где этот коэффициент взять?
В идеале, конечно, измерить все самостоятельно. Для этого нужно измерить длину и толщину заготовки. Потом согнуть заготовку, замерить длины получившихся полок и все посчитать, НО умные люди это уже сделали до нас. Поэтому можно использовать готовые табличные значения этого коэффициента.
Если вы уже заглянули в справочную, то уже обратили внимание, что очень важное значение при расчетах имеют: внутренний радиус гибки (r) и толщина заготовки (S), а точнее их отношение (r/S) – именно они определяет коэффициент нейтральной линии.
При подготовке информации я использовал: 1. Статья «BendWorks. The fine-art of Sheet Metal Bending» Olaf Diegel, Complete Design Services, July 2002; 2. Романовский В.П. «Справочник по холодной штамповке» 1979г
Источник
Если вы сами создаете чертежи, вам нужно знать следующее. Процесс гибки удлиняет материал. Это означает, что нейтральная линия или ось, о которой мы говорили в предыдущей статье, на самом деле находится не посередине материала. Но плоская деталь должна быть сформирована в соответствии с нейтральной линией. И для нахождения ее положения требуется коэффициент k.
Коэффициент K — это эмпирическая константа, то есть его значение было определено в результате испытаний. Он варьируется в зависимости от материала, его толщины, радиуса изгиба и метода гибки. По сути, коэффициент k смещает нейтральную линию, чтобы обеспечить плоский рисунок, отражающий реальность. Используя его, вы получаете допуск на изгиб, который, по сути, является длиной изогнутой нейтральной оси.
Первую часть данной статьи вы можете найти в нашем блоге по ссылке. Примечание: данная статья является переводом.
К-фактор в расчете развертки
Возвращение к старой теме расчета длины развертки детали из листового металла при гибке обусловлено необходимостью консолидации некоторой новой и старой информации по этому вопросу. Обобщение и анализ имеющихся данных, думаю, будут полезными для принятия.
. правильных решений на практике.
Длину развертки криволинейного участка принято определять как длину дуги окружности радиусом r по известной со школы формуле:
Lг=π*r*α/180, где
π =3,14…
r – радиус нейтрального слоя, который ни растягивается и не сжимается при изгибе
α– угол изгиба в градусах
Главная проблема – как максимально точно вычислить этот радиус r ? Ведь просто взять и измерить его по понятным и очевидным причинам нельзя!
Если представить радиус r в виде суммы R и t (смотри рисунок выше), а размер t в виде произведения толщины материала s на некоторый коэффициент K , то получим формулы:
r= R t
t = K * s
r= R K * s
Задача сведена к тому, что для ее решения необходимо знать значение коэффициента К .
Коэффициент смещения условного нейтрального слоя K во многих источниках принято ныне называть коротко: К-фактором.
Так как нейтральный слой всегда смещен к центру изгиба (в сторону сжатых волокон), то всегда 0 K≤0,5. Замечено, что К-фактор зависит от отношения внутреннего радиуса гибки R к толщине металла s :
K =f ( R / s )
На графиках ниже наглядно представлена информация, собранная из ряда доступных популярных источников.
Значения К-фактора, как видите, несколько отличаются у разных авторов.
АСКОН (в старых версиях) «согласен» с немецким стандартом DIN 6935, наш РТМ 34-65 опирается на данные Рудмана и Романовского, Анурьев и «примкнувший» к нему T-flex занимают свою позицию в этом вопросе.
Формула из классического сопромата:
K=1/ln(1 s/R) —R/s
— кривая красного цвета, которой, к слову, я раньше пользовался всегда, близка к значениям Рудмана, но всё же выдает несколько большие значения К-фактора в зоне наиболее распространенных на практике отношений R/s .
Данные Рудмана считаются многими коллегами и экспертами в Сети наиболее точными. Возможно. Несколько смущает странный непонятный перегиб кривой Рудмана в весьма интересной для практики области 0,8 R / s Lг=π*(R K*s)*α/180
Во-вторых, если вы не знаете значения K , то программа, определяя длину развертки, в зависимости от способа гибки и жесткости материала предлагает приближенные значения К-фактора согласно таблице, приведенной ниже.
С одной стороны учет свойств металла и способов гибки детали – это несомненный шаг вперед. Но, с другой стороны, жестко фиксированные значения К-фактора в достаточно широких диапазонах R/s – это «минус» точности расчета развертки.
В-третьих, программа помогает легко вычислить по результатам экспериментальных замеров реальное значение К-фактора для вашего материала, инструмента, оснастки, технологии. Именно этот вариант определения коэффициента смещения нейтрального слоя K настоятельно рекомендует автор при жестких допусках на размеры гнутой детали.
K=(Lг*180/(π*α) —R)/s
Обратите внимание: на графике в начале статьи область, выделенная зеленым цветом, соответствует данным из вышеприведенной таблицы программы. Все-таки она ближе к данным Рудмана, Романовского и классического сопромата в диапазоне 0 R / s !
В Сети программа легко находится по поисковому запросу «BendWorks».
На старинной страничке автора сказано, что программа «абсолютно бесплатна», и помещены координаты для связи и адрес электронной почты:
Хотя английский интерфейс программы прост и интуитивно понятен, для упрощения работы прилагаю ссылку на файл с переводом статьи-справки автора «The fine-art of Sheet Metal Belding»:
Источник
Сегодня поговорим о процессе гибки ЛИСТОВОГО МЕТАЛЛА в SOLIDWORKS.
В процессе гибки листового металла, материал по внутреннему радиусу изгиба подвергается сжатию, а по внешнему радиусу изгиба будет растягиваться. Линия перехода от сжатия к растяжению называется нейтральной осью. На нейтральной оси материал не растягивается и не сжимается.
Следовательно, длина нейтральной оси остается неизменной до и после операции гибки. Расположение нейтральной оси зависит от физических свойств материала и его толщины. Важно знать расположение нейтральной оси для конкретного листа, поскольку все расчеты разверток производятся на основе нейтральной оси. Расположение нейтральной оси для конкретного листа определяется коэффициентом, называемым «К».
Минимальный радиус гиба металлов круглого и квадратного сечений, мм
Диаметр круга d или сторона квадрата а | Ст3 | Ст5 | Сталь 20 | Сталь 45 | Сталь12Х18Н10Т | Л63 | M1, М2 | |||
R1 | R2 | R1 | R1 | R2 | R1 | R2 | R1 | |||
5 | — | — | — | — | — | — | — | — | 2 | — |
6 | — | — | — | 2 | — | — | — | — | 2 | 2 |
8 | 3 | — | — | 3 | — | 5 | — | 7 | 2 | 2 |
10 | 8 | 10 | — | 8 | 10 | 10 | — | 8 | 6 | 6 |
12 | 10 | 12 | 13 | 10 | 12 | 13 | — | 10 | 6 | 6 |
14 | 10 | 14 | 14 | 10 | 14 | 16 | — | 11 | — | — |
16 | 13 | 16 | 16 | 13 | 16 | 16 | 16 | 13 | 10 | 10 |
18 | 16 | — | 18 | — | — | 18 | 14 | — | 10 | |
20 | 16 | 20 | 20 | 16 | 20 | 20 | 20 | 16 | 13 | 13 |
22 | 18 | — | 22 | 18 | — | 22 | 18 | — | 13 | |
25 | 20 | 25 | 25 | — | 25 | 25 | 25 | 20 | 16 | 16 |
28 | — | — | — | 22 | — | 30 | 22 | — | 16 | |
30 | 25 | 30 | 30 | 25 | 30 | 30 | 30 | 24 | 18 | 18 |