Калькулятор параметров и усилия гибки

Основные приемы гибки деталей из труб

Гибку деталей из труб производят в холодном и горячем состояниях ручным и механизированным способами, с наполнителями и без наполнителей.

Наполнители применяют для исключения образования складок и сплющивания стенок труб. В качестве наполнителей используется просушенный мелкий песок или синтетические гранулы.

Для каждой трубы в зависимости от ее диаметра и материала установлен минимально допустимый радиус гибки. При меньшем радиусе гибка недопустима (табл. 1).

Таблица 1. Значения минимально допустимых радиусов гибки труб в холодном состоянии, мм

Наружный диаметр трубы,
мм
Материал трубыНаружный диаметр трубы,
мм
Материал трубы
Сталь
45
Сталь
35
Сталь
20
Сталь
10
Сталь
45
Сталь
35
Сталь
20
Сталь
10
1874625643105450344282240
2495796555110510377310264
32115967967130536450370315
3815613110791145578484398339
50197165136115155620522430360
60238199165139181720600498425
75280260194173194752630516444
80324270224190206835702575488
90362302250213220920770635540

При гибке в холодном состоянии труб диаметром до 25 мм применяются ручные приспособления.

На рис. 4, а показан ручной станок, предназначенный для гибки труб диаметром от 12 до 20 мм. Станок имеет ось 1 и опорную плиту 2, с помощью которых он крепится болтами к верстаку. Рабочими органами станка являются неподвижный ролик 4 с хомутиком 5, укрепленный на оси 1, и подвижный ролик 3, закрепленный на скобе 6 с рукояткой 7.

Гибкие материалы:  Гибка металла в гидравлических прессах - Металлообработка

Рис. 4. Гибка на ручных приспособлениях

Для гибки медных трубок разных диаметров при сборке машин применяют многоручьевой трубогиб (5.66, б). В этом случае трубку пропускают между роликами 1 и 2 до соприкосновения с упором, затем при повороте вилки 3 подвижный ролик 2 обкатывается вокруг неподвижного, изгибая трубку по радиусу, равному радиусу ролика 1.

С помощью ручного рычажного трубогиба (5.66, в) можно изгибать стальные газовые трубы диаметром 1/2 , 3/4 и 1» в холодном состоянии без наполнителя.

Для ручной гибки стальных труб диаметром до 50 мм на угол 180° без наполнителя в холодном состоянии может использоваться специальная головка с ручным приводом.

«правило 8»

При гибке низкоуглеродистой стали ширина раскрытия матрицы должна в 8 раз превосходить толщину листа (V=8*S), тогда Р=8хS, где Р выражается в тоннах (например: для толщины 2 мм раскрытие матрицы /=2х8=16 мм означает, что вам необходимо 16 тонн/м)

Усилие и длина гиба

Длина гиба пропорциональна усилию, т.е. усилие достигает 100% только при длине гиба 100%. Например:

УсилиеДлина гиба
100%3 000 мм
75%2 250 мм
50%1 500 мм
25%750 мм

Cовет:

Если материал ржавый или не смазан, следует добавлять 10-15% к усилию гиба.

Толщина листа (S)

DIN допускает значительное отклонение от номинальной толщины листа (например, для толщины листа 5 мм норма колеблется между 4,7 и 6,5 мм). Следовательно, вам нужно рассчитывать усилие только для реальной толщины, которую вы измерили, или для максимального нормативного значения.

Предел прочности на растяжение ( Rm )

Здесь также допуски являются значительными и могут оказывать серьезное влияние при расчете требуемого усилия гиба. Например : St 37-2: 340-510 Н/мм2 St 52-3: 510-680 Н/мм2

Совет:

Не экономьте на усилии гиба! Предел прочности на растяжение пропорционален усилию гиба и не может быть подогнан, когда вам это нужно! Реальные значения толщины и предела прочности являются важным факторами при выборе нужного станка с нужным номинальным усилием.

V — раскрытие матрицы

По эмпирическому правилу, раскрытие V-образной матрицы должно восьмикратно превосходить толщину листа S до S=6 мм: V=8xS Для большей толщины листа необходимо: V=10xS или V=12xS

Раскрытие V-образной матрицы обратно пропорционально требуемому усилию: • большее раскрытие означает меньшее усилие гиба, но больший внутренний радиус; • меньшее раскрытие означает большее усилие, но меньший внутренний радиус.

Внутренний радиус гиба (Ri)

При применении метода воздушной гибки большая часть материала подвергается упругой деформации. После гибки материал возвращается в свое первоначальное состояние без остаточной деформации («обратное пружинение»). В узкой области вокруг точки приложения усилия материал подвергается пластической деформации и навсегда остается в таком состоянии после гибки. Материал становится тем прочнее, чем больше пластическая деформация. Мы называем это «деформационным упрочнением».

Так называемый «естественный внутренний радиус гибки» зависит от толщины листа и раскрытия матрицы. Он всегда больше чем толщина листа и не зависит от радиуса пуансона.

Чтобы определить естественный внутренний радиус, мы можем использовать следующую формулу: Ri = 5 x V /32 В случае V=8хS, мы можем сказать Ri=Sх1,25

Мягкий и легкодеформируемый металл допускает меньший внутренний радиус. Если радиус слишком маленький, материал может быть смят на внутренней стороне и растрескаться на внешней стороне гиба.

Совет:

Если вам нужен маленький внутренний радиус, гните на медленной скорости и поперек волокон.

Минимальная полка (В):

Во избежание проваливания полки в канавку матрицы, необходимо соблюдать следующую минимальную ширину полки:

Угол гибаВ
165°0,58 V
135°0,60 V
120°0,62 V
90°0,65 V
45°1,00 V
30°1,30 V

Упругая деформация

Часть упруго деформированного материала «спружинит» обратно после того, как усилие гиба будет снято. На сколько градусов? Это уместный вопрос, потому что важен только реально полученный угол гиба, а не рассчитанный теоретически. Большинство материалов имеют достаточно постоянную упругую деформацию.

Упругая деформация зависит от:

  • угла гибки: чем меньше угол гибки, тем больше упругая деформация;
  • толщины материала: чем толще материал, тем меньше упругая деформация;
  • предела прочности на растяжение: чем выше предел прочности, тем, больше упругая деформация;
  • направления волокон: упругая деформация различна при гибке вдоль или поперек волокон.

Продемонстрируем сказанное выше для предела прочности, измеряемой при условии V=8хS:

Предел прочности в Н/мм2упругая деформация в °
2000,5-1,5
2501-2
4501,5-2,5
6003-4
8005-6

Все производители гибочного инструмента учитывают упругую деформацию, когда предлагают инструмент для свободной гибки (например угол раскрытия 85° или 86 ° для свободных гибов от 90° до 180°).

Как самостоятельно согнуть трубу

В случае возникновения необходимости в сгибе трубы своими руками, можно при расчете воспользоваться универсальной формулой (пять диаметров трубы).

Для примера рассчитаем изгиб для трубы диаметром 1,6 мм:

  • Сначала нужно точно представить, какую окружность нужно получить в итоге (для точного сгиба требуется ¼ окружности).
  • Далее нужно узнать радиус. Для этого 16 умножается на 5 – получается 80 мм.
  • Теперь высчитываются стартовые точки для изгиба. В данном случае нужно воспользоваться формулой C=2π∙R:4. Здесь С – тот отрезок трубы, который будет участвовать в работе. Применяется два π и величина внешнего радиуса трубы.
  • На последнем этапе величины замещаются известными показателями: 2∙3,14∙80:4. В итоге получается 125 мм, что равняется продолжительности отрезка, на котором минимально допустимый радиус изгиба будет равняться 80 мм.

Если по приведенным формулам у вас расчеты получить не выходит, их можно провести при помощи программы-калькулятора, которых достаточно в сети Интернет.

Определив нагрузку на круглую трубу и проведя все расчеты, можно начинать работы по гибке, для чего лучше воспользоваться специальным ручным трубогибом, который в значительной степени упростит монтаж. Таких инструментов существует несколько разновидностей.

У дорнового трубогиба есть подвижный элемент внутри, который не допускает образования деформаций.

Независимо от используемого инструмента, помните, что для получения точного и качественного изгиба, проведите изначальные точные перепроверенные расчеты.

Источник

Методы гибки трубы по радиусу

К технологии гибки профильных труб по радиусу сегодня предъявляются довольно высокие требования на предмет качества, производительности и себестоимости. Повышение уровня качества гибки достигается за счет автоматизации и отладки процессов, повышения уровня квалификации специалистов. В настоящее время существуют разные технологии обработки заготовок.

  • Горячая гибка труб по радиусу.

Если для гибки труб по радиусу невозможно использовать трубогибочные установки или приспособления для холодной обработки, заготовки подвергаются предварительному прогреванию. Эта технология сгибания является трудоемкой. Для ее выполнения необходим наполнитель, в роли которого выступает просеянный речной песок, в котором отсутствуют органические вкрапления и слишком мелкие фракции (поскольку в процессе термической обработки они подвержены спеканию и последующему пригоранию к стенкам трубы).

Для обработки необходима температура около 900 °С. Важно следить за тем, чтобы не появились пережоги. Кроме того, обработку следует ограничить одним нагревом, поскольку последующие действия отрицательно скажутся на качестве готового изделия. На размер разогреваемого участка трубы влияют такие параметры, как ее сечение и радиус гибки. После завершения работы необходимо извлечь из нее заглушки и песок, очистить и промыть внутреннюю часть изделия.

  • Холодная гибка труб по радиусу.

У холодной гибки трубы по радиусу есть ряд преимуществ, отличающих ее от горячей обработки. Во-первых, речь идет о большей технологичности и производительности, благодаря которым снижается себестоимость готовой продукции. Технология холодной гибки по радиусу используется при работе с трубами, изготовленными из пластичных цветных металлов. Высокая ковкость, присущая меди и алюминию, позволяет выполнять их обработку, предварительно не разогревая.

Гибка труб по радиусу отрицательно сказывается на их качестве, что особенно актуально для конструкций, изготовленных из мягких металлов или имеющих тонкие стенки. В связи с этим обработка таких изделий производится при помощи механического стабилизатора – дорна.

В первом случае речь идет о направляющем элементе, изготовленном из твердых металлов, рабочая сторона которого имеет закругленный торец. Оснастка размещается непосредственно в точке изгиба. В конструкции гибкого дорна также присутствует твердый стержень.

С одной стороны он дополнен несколькими изгибающимися сегментами шарообразной или полусферической формы. Будучи размещенной в месте изгиба, конструкция обеспечивает сохранность формы прохода. По окончании обработки по радиусу гибкий дорн выталкивают из области гиба, а внутренняя поверхность изделия дополнительно калибруется шариками.

Оборудование для гибки труб по радиусу

Строительный рынок предлагает широкий выбор индивидуальных инструментов, позволяющих выполнять гибку труб по радиусу. Сегодня можно приобрести как простейшие пружины, так и сложное электромеханическое оборудование с гидравлической подачей.

Устройства для гибки труб по радиусу, относящиеся к этому классу, характеризуются простотой конструкции, небольшим весом и габаритами, для выполнения гибки мастеру необходимо прикладывать физические усилия. В зависимости от принципа работы ручные трубогибы могут относиться к одной из следующих категорий:

Рычажные. Для выполнения гибки по радиусу используется большой рычаг, который позволяет снизить прилагаемые физические усилия. В подобных приспособлениях трубу вставляют в пуансон (оправу определенной формы и размера), затем за счет рычага огибают шаблонную поверхность заготовкой, получая в итоге готовое изделие нужного профиля.

Рекомендовано к прочтению

Арбалетные. Для обработки необходимо поместить заготовку на два валика или упора. Гибка происходит за счет того, что на поверхность трубы давит пуансон определенной формы и сечения. Благодаря сменным насадкам и подвижным упорам можно задавать различные значения радиуса изгиба как стальных заготовок, так и изделий из цветных металлов.

Гибочный башмак располагается на штоке, для перемещения которого используется винтовая передача, гидравлическое давление жидкости, нагнетаемой вручную или электроприводом. С помощью этих приспособлений можно выполнять гибку по радиусу труб, изготовленных из мягких металлов, диаметр которых не превышает 100 мм.

Трехроликовые агрегаты (трубогибочные вальцы). Наиболее распространенные устройства, используемые для гибки труб по радиусу в бытовых и промышленных масштабах, в основе работы которых лежит принцип холодной вальцовки. Их конструкция состоит из двух роликов, в которых крепится заготовка, затем к поверхности заготовки приближается третий ролик с одновременной прокаткой изделия в разные стороны.

Названные приспособления для гибки по радиусу являются бездорновыми, соответственно, они показывают низкую эффективность при обработке изделий с тонкими стенками. Кроме того, их применение не рекомендовано при гибке заготовок со сварным стыком стенок, т. к. в процессе пластической деформации существует вероятность раскрытия отдельных участков шва.

  • Электромеханические трубогибы.

В промышленных масштабах пользуются электромеханическими приспособлениями, позволяющими выполнять различные технологические процессы.

Бездорновая гибка. При радиусе гибки трубы типа 3D или 4D используются установки для бездорновой обработки. При помощи таких станков обрабатывают толстостенные трубы, используемые в мебельной и строительной отраслях, для изготовления магистральных трубопроводов. Отличительными характеристиками станков является простота конструкции и управления, малые размеры и вес.

Бустерная обработка. Применяются аппараты, в процессе работы которых деталь продвигается на специальной каретке с узлом. При помощи этих устройств для гибки труб по радиусу можно получать сложные изгибы, при этом стенки заготовок не будут утончаться.

Дорновая гибка. С помощью такого оборудования производится высококачественная гибка по радиусу труб с тонкими стенками, наружный диаметр которых не превышает 120 мм. Управлять промышленными станками можно посредством автоматического или полуавтоматического программного правления.

Трехвалковая гибка. Оборудование подходит для обработки по радиусу заготовок из любых металлов и сплавов. Кроме того, оно без проблем справится как с заготовками, имеющими круглое или прямоугольное сечение, так и с уголками или плоскими пластинами.

Многофункциональность аппаратуры обусловлена возможностью использования валков разных размеров с различными рабочими поверхностями. Показывает высокую эффективность при работе с длинными заготовками, имеющими одинаковый большой радиус закругления на всем протяжении.

  • Профессиональные трубогибы.

Многое ручное и абсолютное большинство промышленного трубогибочного оборудования оснащается гидравлическим приводом.

Такая аппаратура характеризуется:

  • бесступенчатой подачей привода к обрабатываемой трубе;
  • возможностью развития значительных статических усилий в процессе возвратно-поступательного движения, достичь которых невозможно в устройствах с электроприводом;
  • небольшими габаритными размерами основных узлов;
  • высоким быстродействием;
  • надежностью и долговечностью;
  • отсутствием трущихся узлов и хорошей смазываемостью.

Поведение круглого, квадратного и прямоугольного сечения, виды разрушений

Фото - согнутые железные трубопрокатные материалы

  1. Ставшая тонкой внешняя стенка тяготеет к выгибу, направленному к срединной оси трубы. Это приводит к тому, что ее поперечное сечение деформируется.
  2. Когда предел прочности изделия превышается, оно разрывается по внешней плоскости изгибания.

Толщина трубных стенок на внутренней части гиба становится больше, из-за появления сжимающего напряжения. Когда предел прочности изделия на сжимание превышается, оно утрачивает локальную жесткость. Это приводит к образованию глубоких складок на внутренней плоскости изогнутой трубы.

Как ведут себя квадратный и прямоугольный профиль:

  1. Их трубные стенки подвержены сжимающему и растягивающему напряжению, как на наружной, так и на внутренней плоскости изгиба, по максимуму.
  2. У материала повышенная склонность к деформациям, мастеру трудно их контролировать.
  3. Профильный материал на внутренней стороне изгиба склонен к вертикально направленному расширению. При этом он течет горизонтально вдоль торца изделия. Эти напряжения вдавливают вертикально расположенные трубные стенки. При этом квадрат поперечного сечения деформируется. Он приобретает конфигурацию трапеции.
  4. Поперечное сечение прямоугольной и квадратной формы плохо передает зажимные усилия между изгибочной и зажимающей колодкой.
  5. Профиль стремится проскользнуть вдоль колодки в начале изгибания. При этом он может ее тереть, что ведет к износу оборудования.

Поведение материала с круглым сечением, когда происходит его изгиб:

  1. Материал меньше деформируется на участках наивысшего напряжения. Места максимального сжимания/растягивания расположены по касательной осевой линии к поперечному сечению.
  2. Круглая форма дает металлу возможность равномерно растекаться по всем направлениям в ходе изгибания. Благодаря этому мастеру легче контролировать процессы деформации материала.
  3. Благодаря поперечному сечению округлой формы труба хорошо передает усилия между изгибочной и зажимающей колодкой.
  4. При гибке круглых труб по радиусу, они практически не проскальзывают в инструменте.

Свободная гибка

Обеспечивает гибкость, но имеет некоторые ограничения по точности.

Основные черты:

  • Траверса с помощью пуансона вдавливает лист на выбранную глубину по оси Y в канавку матрицы.
  • Лист остается «в воздухе» и не соприкасается со стенками матрицы.
  • Это означает, что угол гибки определяется положением оси Y, а не геометрией гибочного инструмента.

Точность настройки оси Y на современных прессах — 0,01 мм. Какой угол гибки соответствует определенному положению оси Y? Трудно сказать, потому что нужно найти правильное положение оси Y для каждого угла. Разница в положении оси Y может быть вызвана настройкой хода опускания траверсы, свойствами материала (толщина, предел прочности, деформационное упрочнение) или состоянием гибочного инструмента.

Приведенная ниже таблица показывает отклонение угла гибки от 90° при различных отклонениях оси Y.

1,5°2,5°3,5°4,5°
40,0220,0330,0440,0550,0660,0770,0880,0990,11
60,0330,0490,0650,0810,0970,1130,1290,1450,161
80,0440,0660,0880,1100,1320,1540,1760,1980,220
100,0550,0820,1100,1370,1650,1920,2200,2470,275
120,0660,0990,1320,1650,1980,2310,2640,2970,330
160,0880,1320,1760,2200,2640,3080,3520,3960,440
200,1110,1660,2220,2770,3330,3880,4440,4990,555
250,1380,2070,2760,3450,4140,4830,5520,6210,690
300,1660,2490,3320,4150,4980,5810,6640,7470,830
450,2500,3750,5000,6250,7500,8751,0001,1251,250
550,3050,4570,6100,7620,9151,0671,2201,3721,525
800,4440,6660,8881,1101,3321,5541,7761,9982,220
1000,5550,8321,1101,3871,6651,9422,2202,4972,775

Преимущества свободной гибки:

  • Высокая гибкость: без смены гибочных инструментов вы можете получить любой угол гибки, находящийся в промежутке между углом раскрытия V-образной матрицы (например, 86° или 28°) и 180°.
  • Меньшие затраты на инструмент.
  • По сравнению с калибровкой требуется меньшее усилие гибки.
  • Можно «играть» усилием: большее раскрытие матрицы означает — меньшее усилие гибки. Если вы удваиваете ширину канавки, вам необходимо только половинное усилие. Это означает, что можно гнуть более толстый материал при большем раскрытии с тем же усилием.
  • Меньшие инвестиции, так как нужен пресс с меньшим усилием.

Все это, однако, теоретически. На практике вы можете потратить деньги, сэкономленные на приобретении пресса с меньшим усилием, позволяющего использовать все преимущества воздушной гибки, на дополнительное оснащение, такое как, дополнительные оси заднего упора или манипуляторы.

Недостатки воздушной гибки:

  • Менее точные углы гибки для тонкого материала.
  • Различия в качестве материала влияют на точность повторения.
  • Не применима для специфических гибочных операций.

Совет:

  • Воздушную гибку желательно применять для листов толщиной свыше 1,25 мм; для толщины листа 1 мм и менее рекомендуется использовать калибровку.
  • Наименьший внутренний радиус гибки должен быть больше толщины листа. Если внутренний радиус должен быть равен толщине листа -рекомендуется использовать метод калибровки. Внутренний радиус меньше толщины листа допустим только на мягком легко деформируемым материале, например меди.
  • Большой радиус может быть получен воздушной гибкой путем использования пошагового перемещения заднего упора. Если большой радиус должен быть высокого качества, рекомендуется только метод калибровки специальным инструментом.

Какое усилие?

По причине различных свойств материала и последствий пластической деформации в зоне гибки, определить требуемое усилие можно только примерно. Предлагаем вам 3 практических способа:

Таблица по усилиям гибки для листогибочного пресса

Нижеприведенная таблица отображает примерное справочное усилие в соответствии с открытием матрицы, минимальной полкой, толщиной металла и радиусом. Данная таблица действительна для 1 метра конструкционной стали

VH minR0,50,811,21,51,822,533,544,5567891012151820
6512,56,510
861,325811
1071,71,546913
12923571116
15122,74691316
20153,347101319
26184,257,5101421
302256,58121924
32235,47,511,6172330
37255,81014,5202633
42296,71317232935,5
45327,51621273348
50368,31924304358
6043102025364964
705011,52131425569
805713,52737486075
9064153242546695
100711738486086134
1309322374666103149
18013030334875107133
20014533436797119
25018042547795

Тонкости горячей гибки

Изгибание фрагмента профильной трубы происходит после его разогрева. Желательно выполнить операцию за один подход, поскольку многократный разогрев металла нежелателен. Изделие, охлажденное до светлого вишневого цвета, может разорваться.

Поэтому такой способ идеален для выполнения углового единичного сгиба. Для изгибания профиля под округлую арку его нужно применять с осторожностью, поскольку многократный нагрев в данном случае неизбежен.

В качестве наполнителя для трубы при горячей гибке хорошо использовать просеянный и прокаленный песок. Он засыпается внутрь детали с помощью воронки

Чтобы правильно согнуть своими руками профильную трубу горячим способом следует использовать наполнитель. Так удастся предотвратить возможное смятие детали. В качестве наполнителя обычно берется песок.

Оптимальный вариант – среднезернистый строительный песок. Если его нет, подойдет материал из детской песочницы. Для начала его нужно очистить от ненужных примесей.

Для этого песок просеивается сквозь сито с ячейками размером 2-2,5 мм. Так удастся избавиться от крупных камушков и мусора. Если в процессе гибки такое включение окажется непосредственно у стенки трубы, оно сформирует рельеф, которые совершенно не нужен.

Слишком мелкие песчинки тоже не нужны. В процессе нагрева они способны спекаться, что нежелательно. Поэтому песок придется просеять еще раз, теперь уже через мелкое сито. Размер его ячеек должен составлять около 0,7 мм. Прокаливаем просеянный песок.

Наполнитель готов. Теперь можно заняться деталью. Для начала нужно отжечь трубу на участке, где будет выполняться сгибание. Затем можно приступать к изготовлению заглушек.

Потребуется две одинаковых по размеру детали, которые будут закрывать оба конца профильной трубы, чтобы не высыпался находящийся в ней песок. Заглушки выполняются только из дерева, другой материал использовать нельзя.

Определимся с размерами и формой деталей. Это должны быть пирамиды, длина каждой в десять раз больше, чем ширина основания. Размеры собственно основания должны почти в два раза превышать размеры отверстия, которое будет закрываться этой заглушкой. Подготовленные изделия нужно примерить к трубе.

Профильная труба закрывается деревянными заглушками. В одной из них обязательно выполняются выемки для выхода газов, образующихся внутри разогреваемой детали

Если все нормально, на каждой из сторон одной из заглушек выполняем продольный паз. Через эти пазы будет выходить из заготовки скопившийся при нагреве газ. Можно приступать к заполнению трубы.

Для этого берется заглушка без пазов и устанавливается на место. Обычная воронка вставляется в противоположный конец детали. Если труба длинная, ее располагают под углом к земле, если короткая – перпендикулярно.

Через воронку малыми порциями засыпают песок. После каждой порции берут резиновую или деревянную киянку и хорошенько простукивают деталь снизу, помогая песку распределиться максимально равномерно и уплотниться. После того, как при постукивании по всей длине трубы будет слышен глухой звук, работу нужно прекратить. Это значит, что деталь полностью заполнена песком.

Заполненная песком заготовка закрывается второй заглушкой. Теперь нужно мелом наметить границы участка, который должен будет подвергнуться нагреву. Его длина должна быть равна минимум шести диаметрам заготовки.

Деталь надежно закрепляется в зажиме или в тисках. Если труба сварная, ее нужно закрепить так, чтобы шов оказался снаружи изгиба. Если он будет внутри, деталь может лопнуть.

Теперь следует разогреть фрагмент трубы до красно-вишневого цвета. Это можно сделать паяльной лампой либо газовой горелкой для пайки. Важный момент. Весь участок должен прогреваться равномерно.

Нельзя допускать перегрева отдельных фрагментов. Если это все же произошло, следует остудить такие участки. Индикатором достаточно прогретой трубы станет отскакивающая от нее окалина.

Специалисты настоятельно рекомендуют выполнять горячее изгибание профильной трубы за один прием. Многократный разогрев детали может привести к ее разрыву

После того, как заготовка будет раскалена, на ее конец надевают фрагмент трубы большего сечения. Так, чтобы край детали немного не доходил до будущего изгиба. После чего трубу аккуратно сгибают до нужной формы.

Делать это нужно в один прием плавным поступательным движением в вертикальной или горизонтальной плоскости. Полученный изгиб проверяется по шаблону.

Согнутая труба должна остыть, после чего ее следует еще раз сравнить с шаблоном и убедиться в правильности приданной формы. Если это так, заглушки выбиваются. Часто сделать это сложно, тогда можно просто выжечь деревянные пробки и высыпать песок.

https://www.youtube.com/watch?v=QObQZfhQPR0

Чтобы изгиб получился четким, без складок и разрывов, нужно максимально плотно набить в трубу песок и равномерно разогреть деталь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *