РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах – скачать бесплатно

Виды, способы и схемы намагничивания

Используют следующие виды намагничивания: полюсный (продольный, поперечный, нормальный), циркулярный (бесполюсный), комбинированный и во вращающемся магнитном поле. Вид, способ и схему намагничивания выбирают в зависимости от геометрической формы и размеров ОК, материала и толщины немагнитного защитного (естественного) покрытия, а также от типа, местоположения и направления подлежащих выявлению дефектов.

При полюсном продольном намагничивании магнитные силовые линии направлены вдоль продольной оси или наибольшего размера детали, пересекая поверхность и образуя на ее концевых участках магнитные полюсы. Этот способ намагничивания служит для выявления дефектов, направление которых перпендикулярно линиям намагничивающего поля или составляет с ними угол не менее 30°. Дефекты, ориентированные строго параллельно линиям поля, не выявляются. Как видно из рис. 33, полюсное намагничивание осуществляется путем размещения детали между полюсами постоянного магнита (рис. 33, а – г), электромагнита (рис. 33, д), помещения детали в соленоид (рис. 33, е) и обвивки детали или ее части гибким кабелем (рис. 33, ж, и).

Использование постоянного магнита (см. рис. 33, а – г) удобно, особенно в полевых условиях или когда отсутствует специальное дополнительное оборудование магнитного контроля.

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно а бРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно в гРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно д е

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

ж з и

Рис. 33. Схемы реализации полюсного намагничивания:

а – с помощью подковообразного постоянного магнита; б, в – приставных постоянных магнитов типа МСН-11 и МСН-11.01; г – приставного постоянного магнита с гибким магнитопроводом типа МСН-12; д – электромагнита; е – соленоида; ж – гибкого кабеля, намотанного соленоидом; з – магнитного контакта; и – обвивкой зубьев шестерни кабелем

на рис. 33 обозначено: 1 – объект контроля (деталь); 2 – магнитопровод; 3 – обмотка; 4 – кабель; 5 – зона контроля; 6, 7 – перемещаемый магнит; 8 – дефект.

В то же время изменение напряженности намагничивающего поля почти невозможно. Линии поля в местах входа в деталь и выхода из нее образуют зоны магнитных полюсов S и N. Эти зоны – области с ярко выраженной неоднородностью магнитного поля – вносят неоднозначность дефектоскопирования, так как их образование не связано с дефектами. Участки между полюсами намагничиваются преимущественно равномерно.

Участок детали, в пределах которого значение тангенциальной составляющей Нt достаточно для выявления дефектов с требуемой чувствительностью, называют зоной достаточной намагниченности (ДН). Достоинством электромагнита (см. рис. 33, д) является возможность управления режимом контроля. Постоянные магниты и электромагниты применяют при контроле плоских или слабо искривленных участков поверхности детали. намагничивание электромагнитами используют преимущественно для намагничивания участков крупных деталей и всей детали, которую располагают между полюсами электромагнита как замыкающее звено магнитопровода. Примером такой схемы является намагничивание надрессорной балки и боковых рам тележек вагонов с помощью намагничивающих систем МСН-10, МСН-31 или МСН-32. Направление выявляемых дефектов – поперечное.

Продольное намагничивание соленоидом применяют в основном для осесимметричных деталей или по участкам деталей типа валов, например, на участках средней и подступичных частей, а также шеек оси колесной пары. При этом сказывается влияние размагничивающего фактора, поэтому и истинная напряженность магнитного поля внутри ОК оказывается меньше расчетной. Зона ДН включает в себя зону, занятую витками соленоида с прилегающими участками по обеим сторонам (примерно по 150 мм). Длина зоны зависит от формы и размеров детали, положения соленоида относительно детали и величины зазора между корпусом соленоида и контролируемой поверхностью. Максимальная длина зоны ДН обеспечивается при зазоре между корпусом соленоида и контролируемой поверхностью h,равном 40 – 60 мм (рис. 34). Отношение Нпt возрастает при перемещении соленоида от середины к концам детали и достигает наибольшего значения на участках, прилегающих к торцам детали (рис. 35). На этих же участках длина зоны ДН уменьшается из-за возрастания Нп.

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноГибкий кабель для выявления поперечных дефектов наматывают (см. рис. 33, ж) в виде соленоида непосредственно на деталь или жесткий каркас из немагнитного материала. Между кабелем и деталью должен быть зазор от 10 до 20 мм. Интересен вариант схемы полюсного поперечного (рис. 33, и) намагничивания зубьев шестерен путем пропускания импульсного тока по кабелю, проложенному в межзубных впадинах. В индукторах дефектоскопов типа УМДЗ, используемых в локомотивном хозяйстве для контроля венцов зубчатых колес и шестерен, данный кабель жестко закреплен в корпусе индуктора.

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

Рис. 35. Уменьшение зоны ДН при перемещении соленоида к торцу детали

Определение тока в соленоиде осуществляется по упрощенным в сравнении с выражениями (18) и (19) формулам:

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно и РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно , (42)

где РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно – тангенциальная составляющая напряженности поля в ОК, А/см;

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно – постоянная соленоида w/l;

w – число витков;

l и D – длина и диаметр соленоида, см.

Намагничивание способом магнитного контакта (рис. 33, з) применяют при контроле СОН. При этом полюс постоянного магнита или электромагнита перемещают по контролируемой поверхности. Зона контроля равна ширине полюсного наконечника.

При циркулярном намагничивании магнитные силовые линии замыкаются преимущественно в детали. Этот вид намагничивания осуществляется пропусканием электрического тока по детали (рис. 36, а) или ее части (рис. 36, д, е), по проводнику или кабелю, проходящему через сквозное отверстие в детали (рис. 36, б), тороидальной обмотке (рис. 36, в), путем индуцирования тока в кольцевой детали (рис. 36, г). Наиболее эффективно циркулярное намагничивание деталей, имеющих форму тел вращения. При этом вокруг детали образуется магнитное поле, деталь намагничивается круговым потоком силовых линий, расположенных в плоскостях, перпендикулярных направлению тока. Магнитный поток из детали не выходит, он замыкается внутри детали, исключая зоны трещин.

При намагничивании с помощью тороидальной обмотки, например, свободных внутреннего или внешнего кольца буксового подшипника (см. рис. 36, д), магнитные линии в детали также имеют вид концентрических окружностей. Такое намагничивание применяют для выявления на торцах трещин радиальных и расположенных вдоль образующей на цилиндрической поверхности.

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

а б

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно в г

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

д е

Рис. 36. Схемы реализации циркулярного намагничивания: а – пропусканием

тока через деталь; б – с помощью шины с током, помещенной в отверстие

детали; в – пропусканием тока по тороидальной обмотке; г – путем

индуцирования тока в деталь; д – с помощью контактных головок,

устанавливаемых на деталь; е – пропусканием тока по участку детали

на рис. 36 обозначено: 1 – объект контроля (деталь); 2 – магнитопровод; 3 – обмотка; 4 – кабель; 5 – шина с током; 6, 7 – контактные головки; 8 – дефекты.

Определение намагничивающего тока в схеме, приведенной на рис. 36, производят по формуле:

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно , (43)

где РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно – тангенциальная составляющая напряженности поля в ОК, А/см;

l – длина средней линии тороида, см;

w – число витков обмотки.

Циркулярное намагничивание по схеме рис. 36, б применяют при контроле втулок и фланцев. При этом используют неферромагнитный стержень (медную шину) или кабель. Выявляются продольные дефекты на внутренней и внешней поверхностях втулок (труб), а также радиальные дефекты на торцах втулок и фланцев. Удобно выявлять радиальные дефекты вокруг отверстий.

Расчет намагничивающих токов при циркулярном намагничивании производят по формулам: РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно – для схем, изображенных на рис. 36, а, б; РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно – для схемы на рис. 36, е.

здесь Ht – тангенциальная составляющая напряженности магнитного поля, А/см; D – внешний диаметр объекта, см; l – длина участка, см; с – ширина участка (рекомендуемые значения: l = (7 – 25) см, с » 0,6l). Расчет тока для схемы, приведенной на рис. 36, д, производят по формуле РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно , когда расстояние l между контактами 6 значительно больше внешнего диаметра D детали, т. е. при l/D > 5 – 10.

В случае циркулярного намагничивания пластин расчет менее точен, но можно полагать, что при соотношении сторон сечения более 10 – 15 напряженность магнитного поля на поверхности пластины определяется соотношением:

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно , (44)

где b – большая сторона сечения пластины.

Для деталей более сложной формы расчет неточен, поэтому приходится пользоваться или очень приближенными оценками, или, в конечном счете, устанавливать режим намагничивания экспериментально на образцах с дефектами.

Комбинированное намагничивание достигается в результате одновременного продольного и циркулярного намагничивания и использования для него токов одного вида или токов разного вида с соответствующими моментами включения или с изменением их значений и направления. В этом случае возникает результирующее поле, величина которого зависит от параметров каждого из полей. Необходимо, чтобы суммарный вектор намагниченности поворачивался относительно оси детали в пределах 90°. Комбинированное намагничивание позволяет выявлять трещины, направленные под разными углами к оси контролируемой детали. Его осуществляют пропусканием тока по детали и с помощью электромагнита (рис. 37, а) и соленоида (рис. 37, б), путем индуктирования тока в детали и током, проходящим по проводнику, помещаемому в отверстие детали (рис. 37, в), и пропусканием двух (или более) сдвинутых по фазе токов по детали во взаимно перпендикулярных направлениях (рис. 37, г). при этом намагничивающий ток для циркулярного и полюсного намагничивания определяют по формулам (42), (43).

В депо и на вагоноремонтных заводах широко применяют комбинированное намагничивание по схеме, приведенной на рис. 37, б, в установке МДУ1-КПВ, МДУ2-КПВ для магнитного контроля осей колесных пар с напрессованными внутренними кольцами буксовых подшипников.

Намагничивание во вращающемся магнитном поле используют при контроле СОН объектов контроля с большим размагничивающим фактором, с неэлектропроводящими покрытиями. При одновременном наложении на ферромагнетик двух магнитных полей различной направленности в нем образуется векторное поле, величина и направление которого определится сложением составляющих. Если одна или обе составляющие поля переменны, то результирующее векторное поле будет изменяться по углу, величине и направлению и при известном соотношении фаз может формировать вращающееся поле. Из-за неоднородного распределения его компонентов вытекает характерное для этого способа намагничивания практическое следствие: в различных участках детали дефекты выявляются неодинаково, что снижает надежность контроля. Однако при отсутствии более выгодного дефектоскопического оборудования данный способ может оказать пользу: например, намагнитить деталь в двух или трех взаимно перпендикулярных направлениях.

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

а б

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

в г

Рис. 37. Схемы реализации комбинированного намагничивания: а – с помощью электромагнита; б – пропусканием тока по детали и с помощью соленоида;

в – путем индуцирования тока в деталь и пропускания тока по проводнику,

помещаемому в отверстие детали; г – пропусканием двух (или более) сдвинутых по фазе токов по детали во взаимно перпендикулярных направлениях

на рис. 37 обозначено: 1 – объект контроля (деталь); 2 – магнитопровод; 3 – обмотка; 5 – шина с током; 6 – контактные головки.

Каждый из видов намагничивания и средств его осуществления является эффективным тогда, когда обеспечивается достаточное значение напряженности намагничивающего поля детали и создается наивыгоднейшее направление линий этого поля по отношению к ориентации трещин.

§

в магнитном НК намагничивание ОК осуществляют постоянным, переменным и импульсным полями. Для их реализации применяют следующие виды электрического тока: постоянный, переменный однофазный или трехфазный, выпрямленный одно- или двухполупериодный, выпрямленный трехфазный, импульсный. При этом используют: при контроле СПП – переменный, постоянный и импульсный (последовательность импульсов); при контроле СОН – импульсный (не менее трех импульсов), постоянный.

При намагничивании постоянным полем в ОК создают постоянное магнитное поле напряженностью Hmax, при котором достигается насыщение материала, если уменьшение этого поля на 25 % приводит к уменьшению остаточной индукции Br и коэрцитивной силы не более чем на 1 %. Достоинства намагничивания в постоянном поле – его стабильность и отсутствие вихревых токов. Однако выпрямительные устройства на большие токи сложны, поэтому данное намагничивание эффективно для контроля только малогабаритных деталей или их отдельных участков.

Намагничивание в переменных полях удобнее за счет трансформирования больших токов, если не считать технических трудностей для обеспечения выключения тока в моменты достижения амплитудного значения.

Импульсное намагничивание сочетает достоинства намагничивания с помощью постоянного и переменного полей. Чаще всего импульсное намагничивание осуществляется импульсом тока в результате разряда конденсатора большой емкости. Однако вследствие влияния вихревых токов намагничивание различных слоев ОК происходит неодинаково: внутренние – недомагничены, поверхностные – намагничены до насыщения, т. е. деталь не промагничивается полностью. это позволяет эффективно уменьшать влияние размагничивающего действия концов детали, так как поверхностный слой перемагничивается импульсным полем в направлении, противоположном основному направлению намагничивания в постоянном поле. В поверхностном слое образуется как бы замкнутая магнитная цепь.

Намагничивание пульсирующим (выпрямленным) током обеспечивает намагничивание всего объема ОК постоянной составляющей тока и перемагничивание поверхностного слоя переменной составляющей. В результате оказывается возможным магнитный контроль деталей с отношением длины к диаметру, не превышающим 3 – 5, и расширяется номенклатура объектов, контролируемых СОН.

§

Все изложенное выше справедливо для намагничивания бесконечных ферромагнитных сред или однородных магнитных цепей замкнутой формы. В реальных случаях объекты магнитного контроля, будучи телами конечных размеров, намагничиваются во внешнем однородном поле Н не так, как намагничивается само ферромагнитное вещество или материал: на процесс намагничивания деталей оказывает действие размагничивающий фактор. При помещении детали в магнитное поле Н на ее торцах-границах неизбежно образуются магнитные полюсы, которые вызывают появление внутри детали размагничивающего поляНр, направленного против внешнего магнитного поля. Величина этого поля зависит от намагниченности:

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно , (45)

где N – размагничивающий фактор (коэффициент размагничивания или формы), зависящий главным образом от геометрических конструктивных параметров намагниченной детали, а не от ее истинных магнитных свойств.

Тогда результирующее поле внутри детали определяется формулой:

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно . (46)

Из выражения (46) видно, что чем больше N, тем меньше напряженность поля Нi и, следовательно, индукция В в детали.

Объекты магнитной дефектоскопии представляют собой довольно короткие детали с большим диаметром. Мысленно их можно представить совокупностью большого числа параллельных стержней, которые (на рис. 15, а показана одна пара стержней) размагничивают друг друга. Следовательно, чем больше диаметр или чем меньше длина детали, тем меньшее значение индукции она приобретет при намагничивании.

Истинное (результирующее) внутреннее поле можно найти путем смещения кривой намагничивания или петли гистерезиса материала в каждой точке с намагниченностью М влево на величину NМ(рис. 38, б). Если учесть, что РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно и РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно , то, проводя кривую сдвига ОN под углом a, можно сместить точки кривой намагничивания на величину отрезков РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно , образованных между осью ординат и линией ОN, т. е. кривая намагничивания детали Вд есть не что иное, как сдвинутая вправо кривая намагничивания ее материала Вм.

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатноРД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

а б

Рис. 38. Размагничивающий фактор: а – модель размагничивания;

б – построение кривой намагничивания результирующего поля в детали

В общем случае 0 £ N £ 1. Для деталей, у которых поперечные и продольные размеры одинаковы, N » 0,3¸0,4, например, для шара N » 0,33, для эллипсоида с соотношением осей 2 фактор N = 0,73, для целого кольца, так же как и для бесконечно длинного магнита или соленоида, N = 0.

При полюсном намагничивании в разомкнутой цепи объектов с большим размагничивающим фактором, имеющих отношение длины к корню квадратному из площади поперечного сечения (или максимальному размеру поперечного сечения) менее 5, для уменьшения действия этого фактора

составляют объекты контроля в цепочки, при этом фактическая площадь контакта соприкосновения торцевых поверхностей деталей должна быть не менее 30 %;

«удлиняют» детали специальными удлинителями из магнитомягкой стали;

используют переменный намагничивающий ток с частотой 50 Гц и более или импульсный ток.

§

Намагниченные детали после осмотра и разбраковки должны быть размагничены, так как остаточная намагниченность может вызвать нежелательные последствия. Например, поверхности плохо размагниченных роликов и колец подшипников притягивают ферромагнитные продукты износа, что вызывает ускоренный износ подшипников и последующие осложнения в эксплуатации вагонов. Во избежание этого контролируемые детали тщательно размагничивают и проверяют степень размагниченности. Размагничивание как этап контроля часто присутствует в магнитном контроле, но не влияет на его достоверность, т. е. это скорее не контроль, а приведение детали в состояние, пригодное для дальнейшего использования.

Существуют следующие способы размагничивания:

нагревание объекта до точки Кюри (для ферромагнетиков она лежит в большом диапазоне, у железа – 768 °С);

однократное приложение встречного поля «большой силы»;

воздействие знакопеременным полем с уменьшением его амплитуды во времени.

Первые два способа, в отличие от последнего, в практике магнитного НК не применяются в силу ряда технологических и технических ограничений.

Сущность третьего способа размагничивания состоит в следующем. Деталь подвергают циклическому перемагничиванию переменным полем, напряженность которого по амплитуде с каждым полупериодом уменьшается до нуля (рис. 39, а), т. е. РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно . К моменту, когда она достигнет почти нулевого значения, остаточная индукция также будет близка к нулю (рис. 39, б).

Имеют место две процедуры исполнения данного способа размагничивания, когда величину размагничивающего поля уменьшают либо удаляя соленоид от ОК, либо снижая ток в его обмотке. Некоторые дефектоскопы имеют режимы автоматического снижения тока в намагничивающих устройствах, но в большинстве случаев детали помещают в соленоид, включают его и плавно в течение 5 с, не менее, осуществляют их относительное удаление на расстояние не менее 0, 5 м, после чего соленоид выключают. Независимо от путей исполнения данного способа процесс размагничивания идет по частным петлям гистерезиса, видно (см. рис. 39, б), что остаточная индукция уменьшается от цикла к циклу. Число периодов размагничивания обычно не менее 40 – 50, т. е. уменьшение амплитуды напряженности должно быть достаточно плавным. Полного размагничивания достичь, конечно, не удается, поскольку все детали находятся в магнитном поле Земли. детали необходимо размагничивать до уровня, при котором остаточная намагниченность не нарушает нормальной работы машин и механизмов.

РД 13-05-2006 Методические рекомендации о порядке проведения магнитопорошкового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах - скачать бесплатно

а б

Рис. 39. Иллюстрация сущности размагничивания: а – изменение

напряженности магнитного поля; б – частные петли гистерезиса

Для размагничивания используют демагнитизаторы – соленоиды, питаемые переменным током различной частоты. Однако можно применять те же устройства, что и для намагничивания. Размагничивание объектов подвижного состава железнодорожного транспорта производится дефектоскопами МД-12ПШ, МД-12ПЭ, МД-12ПС и МД-12ПР. размагничивание в них осуществляется удалением детали или дефектоскопа на расстояние, где напряженность поля можно считать равной нулю. Удаление производится в течение (20 ± 5) с на расстояние более 0,5 м. Контроль размагниченности осуществляют миллитесламетром ТП2-2У или измерителями напряженности МФ-107А, МФ-109.

На подвижном составе железнодорожного транспорта установлены предельные уровни остаточного поля: для колец буксовых подшипников – не более 3 А/см; для всех остальных деталей – не более 5 А/см.

При размагничивании больших партий деталей качество размагничивания определяют следующим образом. Одну из деталей нагревают до точки Кюри и охлаждают в отсутствие внешних магнитных полей (кроме магнитного поля Земли). Затем чувствительным измерителем магнитной индукции оценивают максимальную намагниченность хотя бы в относительных единицах. Если показания при этом – некоторое число a, то считают детали достаточно размагниченными при 3a. Обычно в качестве индикатора применяют МФ-23, МФ-23И и МФ-23М. Оценка осуществляется по модулю и знаку разности значений остаточной магнитной индукции в зоне контроля и на базовом расстоянии 20 мм. Диапазон измерения разностей значений магнитной индукции составляет ± 2мТл.

Библиографический список

1. ГОСТ 18353-79. Контроль неразрушающий. Классификация видов и методов. М.: Изд-во стандартов, 1979. 18 с.

2. ГОСТ 21104-75. Контроль неразрушающий. Феррозондовый метод. М.: изд-во стандартов, 1975. 12 с.

3. ГОСТ 21105-87. Контроль неразрушающий. Магнитопорошковый метод. М.: Изд-во стандартов, 1987. 20 с.

4. Щербинин В. Е. Магнитный контроль качества металлов / В. Е. Щербинин, Э. С. Горкунов / УрОРАН. Екатеринбург, 1996. 263 с.

5. Шелихов Г. С. Магнитная дефектоскопия деталей и узлов: Практ. пособие / Г. С. Шелихов / Науч.-техн. центр «Эксперт». М., 1995. 224 с.

6. Герасимов В. Г. Неразрушающий контроль: В 5 кн. Кн. 3. Электромагнитный контроль: Практ. пособие / В. Г. Герасимов, А. Д. По-кровский, В. В. Сухоруков. М.: Высшая школа, 1992. 312 с.

7. Ахмеджанов Р. А. Магнитопорошковый метод неразрушающего контроля: Конспект лекций / Р. А. Ахмеджанов, С. В. Вебер, Н. В. Ма-карочкина / Омский гос. ун-т путей сообщения. Омск, 2004. 80 с.

8. Ершов С. Г. Современные автоматизированные установки магнитопорошкового контроля концов и торцов труб / С. Г. Ершов // В мире неразрушающего контроля. 2004. № 3 (25). С. 32 – 34.

Гибкие материалы:  Обзор всех съёмных зубных протезов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *