Радиусная гибка швеллера и уголка в любой плоскости! СПб

Описание услуги вальцевания металла.

Сварочное производствоПри помощи вальцевания можно создать трубу или цилиндрическую конструкцию из листа, арку из профильной трубы и кольцо из уголка. Данная услуга позволяет свести к минимуму количество сварных швов при производстве бочек, котлов, бункеров, желобов, резервуаров, зернохранилищ и других конструкций.

Посредством вальцовки профильных труб можно создавать оптимальные по прочности и эстетичные арочные конструкции. Технология подразумевает деформацию металла, как в холодном, так и в горячем состоянии. При помощи вальцовочного оборудования осуществляется объемная штамповка заготовки при помощи вращающихся в разные стороны вальцов.

Во время вращения они захватывают заготовку, она проходит между вальцами и в результате деформации приобретает форму заданной конфигурации. Механизм оборудования состоит из верхних и нижних валец, которые обладают рядом особых настраиваемых характеристик: радиус, толщина материала и др.

Почему обечайки так необходимы?

Эти детали становятся главными при построении корпусов. Среди узлов агрегата этот отличается материалоемкостью, наибольшей ответственностью. То есть, он принимает на себя максимум нагрузок. При прокладке технологических трубопроводов без данной конструкции вообще не обойтись, как и без валков.

Из обечаек изготавливают колонное оборудование, трубопроводы нестандартной формы. Каждое изделие сопровождается документом.

Особо сложными для изготовления считаются обечайки с критическим соотношением между диаметром внутреннего и толщиной вальцуемого материала.

В машиностроении производство также невозможно представить без таких деталей. Обечайками можно назвать многие конструкции, имеющие коническую либо круглую форму. Главное – обращаться к изготовителю, который гарантирует полный контроль производственных процессов, соблюдение необходимых размеров.

Особенности дефектов, описание технологии

При вальцовке работы проводятся с подгибом листа либо без выполнения данной операции, всё зависит от геометрических размеров детали, изначальных показателей по прочности. Когда выбирают оборудование, данные параметры играют не менее важную роль. При изготовлении обечайки могут иметь следующие размеры:

  1. Толщина в пределах от 3 до 100 мм.
  2. Длина – 30-3100 мм.
  3. Диаметр наружной стороны – 20-280 сантиметров.
Гибкие материалы:  Введение в механику гибкой нити — Меркин Д. P. — Теплокот

При деформации внутри деталей из металла искажения доходят до предельных значений. Также меняется и толщина.

Сама операция по вальцеванию конструкций из металла и из нержавейки состоит из двух основных стадий – гибка, непосредственно сама вальцовка. Последняя часть процесса отличается тем, что способствует перемещению гибки по всей поверхности, подвергаемой обработке.

Металл подвергается двум видам деформации – начинается с упругой, потом переходят к пластической. Чем меньше радиус загибания – тем больше надо прилагать усилий. Это связано с тем, что увеличивается слой металла в мм, который требует волочения.

В металле могут возникать внутренние напряжения после того, как вальцевание металла заканчивается. Существует три разновидности подобных явлений. Их учитывают и те, кто работает в городе Обнинске.

  • Зональные напряжения появляются между отдельными зонами сечения и частями детали. Именно эта деформация больше всего способствует появлению дефектов, потому она считается наиболее опасной. После появляются коробления и трещины на поверхности валков, других деталей. Их свойства зависят от градиента температур, появляющегося между разными частями детали во время температурного воздействия. Для измерения также пользуются мм.
  • Изменения структурного типа происходят у зёрен внутри либо снаружи. Появление напряжений связано с различными расширительными коэффициентами, обладающими разными характеристиками. Образование новых фаз различных объёмов тоже может привести к дополнительным предметам. Это негативно влияет на изготовление рулонных и других видов деталей. Обнинск не исключение.
  • Напряжения третьей группы появляется внутри объёма нескольких ячеек, составляющих кристаллические решётки. Из-за этого может усложняться подгибка кромок.

У всех напряжений разная природа образования. Но последствия остаются одинаковыми – возникновение упругой деформации, искажение внутри кристаллической решетки. Но это не влияет на изготовление упаковки толстостенных изделий, к примеру.

Проблемы легко устраняются, для этого достаточно использовать термообработку. Ведь сам характер деформаций изменяется, если их сильно охладить либо нагреть. К примеру, при повышении температур происходит расширение поверхностных слоёв. Но сердцевина остаётся непрогретой, создаёт дополнительные препятствия. Это касается и кромок.

Это приводит к появлению напряжения сжатия. Обечайка 24 миллиметра не исключение. Но охлаждение делает так, что процессы происходят в обратном порядке. У поверхностных слоёв температура обычно меньше.

Именно поэтому они подвержены напряжениям больше, чем те слои, что находятся глубже. Но после окончательного охлаждения температура будет выровнена на всей поверхности металла. Развальцовка не нужна. А вот дополнительная настройка никогда не помешает.

При этом не стоит ждать, что дефекты будут устранены окончательно. Есть ещё напряжения, которые получили название остаточных. С ними знакомы и те, кому требуется проводить обработку кромок.

Термическая обработка, например, отпуск, имеет и другие полезные свойства для изделий с углом. Потребность в этой операции могут испытывать те, кто работает с закалённой сталью.

Структурно-напряженное состояние для таких материалов стало практически нормой. Основа становится более пластичной, когда повышается температура. Чем она больше – тем дольше длится сама обработка. Что и позволяет снять большую часть напряжений. Картонные изделия во многом похожи на металлические.

Вальцевание – как проводить, какими инструментами?

Специальные прессы или машины – вот какие приспособления могут справиться с подобными видами обработки. Гибку обечаек нельзя осуществить только ручным методом. То же самое касается и гибки. Технология вальцовок должна соблюдаться максимально строго, иначе нужного результата не добиться, работая с установкой, занимаясь прокаткой.

Трёхвалковые вальцы – разновидность оборудования, которая часто используется для решения подобных задач. Встречается несколько разновидностей приспособлений:

  1. Ручные.
  2. Механические – в Санкт-Петербурге и других городах они получили широкое распространение.
  3. С электрическим приводом – такие широко используются в городе Обнинске.

Чаще всего в СПб и других городах используется вариант, когда валки располагаются в виде треугольника. Два находятся снизу, а один – сверху. Диаметры валков бывают разными, всё определяют характеристики требуемой детали. Длина вальцевания находится в пределах 340-3000 мм.

Электрическое оборудование – гораздо более лёгкий вариант для использования. Это можно понять, ознакомившись с нормативной документацией. Но и его стоимость доступна далеко не каждому. Если не планируется открывать крупномасштабное производство, то можно обойтись и более простыми вариантами установок. Такие имеют простой угол.

Вальцовка листа

Главная задача листовой вальцовки – получить пространственное изделие, из которого впоследствии можно сформировать цилиндрическую заготовку (трубу), конус, овал другие изделия. От вальцовки цилиндра данная технология отличается большей простотой, так как согнуть предстоит не объемный, а плоский прокат. По сравнению с работами по прессовке и вытяжке эта технология считается:

  • экономичной: затраты на оборудование и оснастку минимальны, а сам процесс занимает немного времени; 
  • эффективной. Она может использоваться как для штучного, так и для массового производства заготовок; 
  • щадящей для оборудования – его износ незначителен, а ремонтные работы в случае неполадок просты и незатратны; 
  • точной и аккуратной: в процессе работы вероятность брака сводится к минимуму.

Вальцовка листового металла — цена

Заказать услуги по вальцовке листового металла можно на специализирующихся на этих видах работ предприятиях. Такие виды работ считаются сложными, поэтому и выполнять их должны профессионалы.

Цены на вальцовку листа и вальцовочные работы во многом зависят от того, какой металл необходимо обработать. Это может быть сталь различных марок, алюминий, медь, дюралюминий, латунь, бронза и прочие металлы, которые могут быть подвержены вальцовке.

В основном цена стартует от 8 долларов США за один погонный метр готовой продукции. На более объемные работы цена, как правило, договорная, в зависимости от сложности процесса вальцевания.

Вальцы трехвалковые.

Чаще всего гибочные вальца состоят из трех валков, от этого и их название трехвалковые вальцы. Два нижних валка ведущие, они создают вращение в одну сторону, а третий верхний ведомый, он поджимает лист и от трения получает вращение.

Лист помещают посередине между двумя нижними и одним верхнем валками и несколько раз прокатывают между ними (рис.1, а). После каждого прогона листа в вальцах, верхний валок постепенно опускается и нажимает на лист (рис.1, б). Механизм, благодаря которому опускается верхний валок может быть, как ручной, так и автоматический. Таким образом можно получить любой радиус кривизны, но не меньше диаметра верхнего валка.

Рис.1. Различное положение валков.

Если лист должен получить коническую поверхность, то концам верхнего валка дают определенный наклон, и верхний валок занимает наклонное положение по отношению к нижним. При этом между верхним валком и листом возникают не только трение качения, но и трение скольжения, так как различные точки листа по образующей конуса будут двигаться с различными окружными скоростями, при постоянной окружной скорости поверхности валка.

Радиус кривизны листа получается постепенно в результате неоднократного движения листа между валками. Изменение направления вращения валков (передний и обратный ход) в малых станках осуществляется прямым и перекрестным ремнем, а в больших — реверсивным электродвигателем.

С помощью гибочных вальцев выполняют гибку разных замкнутых и не замкнутых деталей конической и цилиндрической формы. Для того чтобы снять свальцованную деталь замкнутой формы с верхнего валка на одном его конце имеется откидной подшипник.

Если валки имеют большую длину, возможность прогиба их предупреждается установкой под нижними валками двух роликов. Если на валках не производится загибания замкнутых барабанов малого диаметра, то и верхний валок поддерживается такими же роликами, которые прикрепляются к траверсе (рис. 2).

Рис.2. Схема расположения валков.

1 — верхний валок, 2 — нижний валок; 3 — поддерживающие ролики; 4 — траверса с роликами.

Вальцы четырехвалковые. подведение концов при вальцовке листа.

Операцию подведения концов производят при вальцовке листов на четырехвалковых листогибочных станках (рис.4). Валки а и в устанавливаются в зависимости от толщины листа, а валки б и г, расположенные по бокам, придают листу изгиб. Валки б и г могут перемещаться в направлении стрелки А и Б.

Рис. 4. Схема четырехвалкового станка:

а — верхний валок, в — нижний валок; б и г — боковые валки.

При вальцовке котельных барабанов на четырехвалковых станках постепенным поджатием нажимных валков б и г образуют замкнутый цилиндр.

Тем не менее и на этих станках остается недогнутая каемка шириной около полуторной толщины листа. Этот недостаток устраняется соответствующим удлинением листа, недогнутая каемка которого затем срезается.

При вальцовке барабанов паровых котлов или других цилиндрических сосудов, соединяемых нахлестным швом, гибка имеет некоторые особенности, вызываемые этой конструкцией шва.

У барабанов с продольным швом внахлестку концы листа имеют различные между собой радиусы кривизны, которые также отличаются от радиуса кривизны самого цилиндра.

Статья оказалась полезной?! Поделись с друзьями в социальных сетях!!!

Гибка швеллера по радиусу

Радиусная гибка швеллера и уголка в любой плоскости! СПб
Радиусная гибка швеллера бывает 3-х видов: на ребро, плашмя полками наружу и плашмя полками внутрь. Самым сложным из перечисленных видов является гибка швеллера на ребро, поскольку если поставить его узкой полкой на поверхность пола, мы увидим, что в вертикальной плоскости швеллер не симметричный и при воздействии нагрузки на узкую полку очень легко потерять правильность сечения на длине гиба, то есть деталь может повести. Для предотвращения этой ситуации необходимо выстраивать систему калибрующих роликов или если нужно согнуть несколько деталей — сваривать швеллера «коробкой» и тогда шанс сохранить сечение при вальцовке швеллера будет значительно выше.
Фабрика гнутых деталей выполняет услуги по гибке швеллера в любой плоскости: гибка швеллера на ребро и плашмя полками наружу и внутрь практически без ограничений по сложности с гарантией качественного гиба. Собственные производственные линии позволяют выполнять гибку швеллера в сжатые сроки и по минимальной рыночной стоимости.

Загиб кромки металлического листа.

На трехвалковом гибочном станке можно выполнять отгибку кромок на длинных листах. Для этого необходимо прострагать паз (рис.3) на нижнем валке по всей его длине. В этот паз будет вставляться край листа и при вращении нижнего валка верхний будет отгибать кромку.

При гибке металл испытывает вредные напряжения, для того чтобы этого не случалось предельный радиус должен быть не менее 20 толщин листа. Для того чтобы согнуть не весь лист, а только часть его, начало и конец гибки намечают мелом. По нанесенным отметкам выполняют гибку.

Рис.3. Гибка кромки листа на вальцах:

1 — паз: 2 — лист.

Гибка листов на трехвалковом станке требует подготовительно; работы — подведения концов. Концы загибаемого листа на некотором расстоянии от кромки при гибке на вальцах не получают должного изгиба. Это расстояние тем больше, чем больше расстояние между осями вальцев.

От гибки на прессах, листы немного начинают пружинить. Для этого подбирают радиус кривизны матрицы, он должен быть меньше радиуса нужной кривизны листа. В среднем при толщине листа 10 – 12 мм и хорошей отожженности (низкий отпуск) металла радиус кривизны у матриц принимают менее радиуса кривизны листа на двойную толщину металла.

Как можно согнуть уголок?

У вальцовки уголков существует своя простая, но классификация. По использованию термической обработки или отсутствию необходимости в ней сгибание может быть горячим или холодным. Кроме того, выделяют технологию, при которой согнутые заготовки дополнительно привариваются друг к другу или к основе.

Хотя именно гибка помогает намного сократить количество сварных соединений и увеличить прочность изделия.По усилию, которое прилагается в процессе, вальцовку можно разделить на свободную и автоматическую. Свободная производится, по сути, голыми руками, без привлечения оборудования. Автоматическая подразумевает станочный способ преображения заготовки.

Наиболее экономически выгодной считается вальцовка уголка по радиусу, выполненная на станке холодным способом. С одной стороны, минимизирован ручной труд, с другой — исключаются потеря времени и финансовые расходы, связанные с нагревом заготовки. У этой методики есть и другие преимущества:

  • коррозионная стойкость металла (у некоторых видов стали после термической обработки это свойство исчезает или ухудшается);
  • более длительный срок эксплуатации, так как материал сохраняет механическую прочность и другие характеристики;
  • как следствие минимальных расходов на производство — низкие расходы для заказчика.

И, наконец, по направлению гиба различают вальцовку уголка полкой внутрь и вальцовку уголка полкой наружу. Первый вариант сложнее, так как при образовании кольца происходит сжатие полок (в специальной литературе их также называют перьями) и на вертикальной полке может возникнуть волнообразный эффект.

Как согнуть уголок в кольцо своими руками

Для этого лучше всего воспользоваться горячим способом обработки металла. А вот добиться заданного радиуса можно только с помощью заранее приготовленного шаблона. Предварительно нагреваем металл и начинаем равномерно огибать шаблон, при этом горизонтальную полку необходимо править во время всего процесса сгибания с помощью кувалды или молота, в противном случае полки не сохранят изначальный угол в 90 градусов между собой.

Нагревать металл необходимо до половины значения температуры его плавления, так, к примеру, алюминиевый уголок придется нагреть как минимум до 250⁰ С, а стальной профиль — до 600⁰ С. Для этого вам понадобится горелка на природном газе или бензиновая паяльная лампа, а лучше всего воспользоваться сварочным ацетиленовым резаком, если уголок большого размера.

С помощью болгарки и сварочного аппарата тоже можно согнуть стальной уголок в кольцо, но для этого необходимо произвести достаточно точные расчеты, разметить и расчертить удаляемые сектора, согнуть и заварить швы. К сожалению, как бы вы ни старались, в этом случае получиться круг в виде округлого многогранника.

ПОСМОТРЕТЬ Гибочные станки на AliExpress →

Машины для листовой вальцовки


В зависимости от структуры (количества рабочих валков) вальцовочное оборудование делится на: 

  • двухвалковое, 
  • трехвалковое, 
  • четырехвалковое. 

Чем меньше оснащенность станка, тем меньше и его функционал. Но даже простейшим двухвалковым машинам доступна гибка металла на вальцах для изготовления элементов дымоходов, вентиляционных систем, воздуховодов, сетей водоотведения и пр.  

Возможности оборудования определяются и размерами вальцов: от их величины напрямую зависит радиус гиба. Не менее важна и длина валка: она влияет на пропускную способность по ширине листа. Наконец, мощность приводной системы говорит о потенциале станка в обработке заготовок большой толщины.

Назначение и методы

Обработка трубопроката методом вальцовки, как уже говорилось выше, может выполняться с целью изменения формы профиля поперечного сечения, а также для того, чтобы изменить начальные параметры готовой трубы – наружный и внутренний диаметры, толщину стенки, форму конечной части.

Если для расширения конечной части мягких трубок для кондиционеров эффективны простейшие приспособления, то для вальцовки трубных изделий, изготовленных из стальных сплавов, необходимо применение специальных инструментов. Последние в зависимости от параметров и материала изготовления трубопроката, который необходимо подвергнуть вальцовке, делятся на следующие категории:

  1. Т – для обработки труб с внутренним диаметром в диапазоне 5,6–12,5 мм (особенностью инструмента данной серии является то, что с его помощью вальцевать можно на ограниченную глубину);
  2. СТ – для вальцовки сварных изделий, внутренний диаметр которых находится в интервале 6–11 мм (также имеет ограниченную глубину вальцевания);
  3. Р – для обработки трубопроката диаметром 1,2–4 см (максимальная величина развальцовки при использовании такого инструмента составляет 4,87 см);
  4. РТ – для работы с трубами диаметром 0,55–1,15 см (при этом увеличиваться внутренний диаметр изделия может до 1,29 см);
  5. СР – для вальцовки на более значительную глубину (максимальная величина развальцовки инструментами данной серии составляет 3,23 см);
  6. 5Р – для обработки тонкостенного трубопроката из нержавеющих стальных сплавов.

На современном рынке представлено еще несколько серий инструмента для вальцовки, но мы перечислили наиболее популярные из них.

Специализированный инструмент для выполнения развальцовки труб чаще всего используется при монтаже теплообменников, в которых устанавливаются трубные решетки. Рабочий орган такого приспособления, который и оказывает механическое воздействие на стенки трубы, подвергается специальной обработке, позволяющей наделить его высокой прочностью.

Обзор типов вальцовки

Так как разные сферы применения вальцовки предполагают работу с различными видами материала и для различных целей, сам процесс также имеет множество типов.

В зависимости от направления подачи листа в процессе обработки, необходимого для получения детали нужной конфигурации, выделяют три типа вальцевания:

  • поперечное — длинные элементы незамкнутого трубного проката обрабатывают, подавая материал именно в таком направлении;
  • продольное — обрабатывают короткие элементы и заготовки незамкнутых труб;
  • винтовое — таким образом могут деформироваться изделия, не предназначенные для дальнейшей сварки стыка.

Для работы с различными по форме и структуре материалами используются разные типы оборудования. Они отличаются по типу конструкции, предназначению и техническим возможностям и включают три основных вида:

  1. Ручные станки — недорогое, простое в обслуживании мобильное оборудование. Обработка металла ручным способом возможна, только если его толщина не превышает 2 мм, но и для этого могут потребоваться существенные физические усилия.
  2. Электрические станки — эффективные установки, основные параметры которых зависят от мощности силового мотора. Сниженная мобильность компенсируется возможностью обрабатывать материалы толщиной 4-6 мм. Такие станки устанавливают в цехах крупных предприятий, так как значительные энергозатраты полностью окупаются лишь при условии массового производства.
  3. Гидравлические станки — самые мощные и габаритные из установок для вальцовки, поэтому применяются в условиях электрической, машиностроительной и судостроительной промышленности. Позволяют обрабатывать материалы до 10 мм толщиной. Вальцовка на таких станках осуществляется при помощи современного компьютерного управления.

Область применения

Процесс вальцевания листового металла представляет собой способ деформации, который производят непрофилированным вращающимся инструментом. Это операция холодной штамповки, при которой металл обретает форму конуса. После обработки таким способом структура заготовки становится плотнее, улучшаются ее основные свойства.

Деформацию металла применяют во многих случаях и для разных материалов. Например, вальцевание является подготовительным этапом для штамповки готового изделия. Эта же технология используется для первичной переработки заготовок.

Такой процедуре может подвергаться не только листовой металл, но и трубы, прутки и другие профили, изделия из резиновых смесей и пластмасс. Важно, чтобы материал был в необходимой мере пластичным.

Вальцовку металла часто применяют для уплотнения, сдавливания и плющения заготовок, для придания им равномерного лоска и толщины. Процесс может протекать и в холодном состоянии, и в нагретом. Возможно нагревание валков и изменение скорости прохождения заготовки.

Сегодня вальцовкой металла занимаются не только на производстве, но и в домашних условиях, для чего используют специальный одноименный инструмент. На предприятиях это большие станки с электро- и гидроприводами. Для ремонтных мастерских более подходят простые конструкции, часто изготовленные своими руками.

Технологический процесс деформации металла данным способом состоит из нескольких этапов:

  1. Подготовка оборудования — вальцов.
  2. Прокатка бруска или листа.
  3. Промежуточный отжиг.
  4. Обработка заусениц и трещин.
  5. Завершающий отжиг и прокатка.

Отсутствие заусениц и трещин — одно из главных условий качественного вальцевания. Такие дефекты могут появиться в случае чрезмерно сильного обжима валками бруска либо от неравномерного напряжения и отжига. Выявляют дефекты и устраняют их на четвертом этапе работы после промежуточного отжига. Если этого не сделать и продолжить прокатку, то трещины будут увеличиваться.

Устраняют брак затиранием трещин надфилем и отпиливанием, откусыванием заусениц. Затем, чтобы снять с металла напряжение, заготовку отжигают и продолжают прокатку металла. Образовавшиеся углубления выравниваются.

Особенности и проблемы гибки металла на вальцах.

Да, как было бы всё красиво и просто – надавил, прогнал – деталь готова, но есть несколько «но»…

1. При вальцовке деталей с малыми радиусами в целом ряде случаев нельзя получить необходимый радиус R за один проход по причине возможности возникновения деформаций, гофр и надрывов  в верхних (сжимаемых) и нижних (растягиваемых) слоях сечения заготовки.

2. Одномоментная без прокаток подача среднего ролика (валка) на большое расстояние H может быть недопустимой из-за возникновения значительных усилий, перегружающих сверх допустимой нормы механизм вертикального перемещения вальцев.

3. Концы заготовки, если их предварительно не подогнуть, например, на прессе, останутся прямолинейными участками при гибке на трехвалковых вальцах! Длина прямолинейных участков L чуть больше половины расстояния между нижними роликами А/2.

4. При движении  среднего ролика (валка)  вниз в сечении заготовки, подверженном изгибу, постепенно нарастают нормальные напряжения, которые вызывают вначале пружинную деформацию. Как только напряжения в крайних верхних и нижних волокнах сечения достигнут предела текучести материала детали σт, начнется пластическая деформация – то есть начнется процесс гибки.

Если средний ролик (валок) отвести обратно вверх до начала возникновения пластической деформации, то заготовка отпружинит следом и сохранит свое первоначальное прямолинейное состояние! Именно эффект обратного пружинения вынуждает увеличить размер вертикальной подачи Hрасч на  величину x, так как участки заготовки отпружинивают и частично распрямляются, выходя из зоны гибки, расположенной между роликами (валками).

Мы нашли эту поправку x опытным путем. Обратное пружинение или остаточную кривизну детали можно рассчитать, но это непростая задача. Кроме величины предела текучести материала σт значимую роль при решении этого вопроса  играет момент сопротивления изгибу поперечного сечения вальцуемого элемента Wx.

А так как часто профили особенно из алюминиевых сплавов имеют весьма замысловатое поперечное сечение, то расчет момента сопротивления Wx выливается в отдельную непростую задачу. К тому же  и фактическое значение предела текучести σт часто значительно колеблется даже у образцов, вырезанных для испытаний из одного и того же листа или одного и того же куска профиля.

В предложенной методике сделана попытка уйти от определения обратного пружинения «методом научного тыка». Для пластичных материалов, например алюминиевых сплавов, значение x будет очень небольшим. Для сталей – в зависимости от марки, конечно, немного больше.

Вопросы, касающиеся гибки металла, рассматриваются так же в целом ряде весьма популярных у читателей этого блога статей: «Расчет усилия листогиба», «Расчет длины развертки», «Изготовление гнутого швеллера», «Всё о гнутом швеллере», «Всё о гнутом уголке».

Для получения информации о новых статьях  и для скачивания рабочих файлов программ прошу Вас подписаться на анонсы в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтвердить подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку «Спам»)!!!

С интересом прочту Ваши замечания и отвечу на Ваши вопросы, уважаемые читатели!!! Поделитесь результатами практических испытаний методики со мной и коллегами в комментариях к статье!

Прошу уважающих труд автора скачивать файл с расчетом после подписки на анонсы статей!

Ссылка на скачивание файла: raschet-mestopolozheniia-rolika (xls 32,0KB).

Другие статьи автора блога

На главную

Радиусная гибка имеет ряд преимуществ в сравнении со сварочными конструкциями:

  • повышается прочность конструкции в связи с исключением дефектов, характерных для сварных швов, например, непроваров;
  • увеличивается срок службы изделий за счет сохранения целостности металла и низкой вероятности образования коррозии;
  • снижается стоимость металлообработки благодаря снижению временных затрат на выполнение технологических операций и отсутствию потребности в зачистке сварочного шва.

Важнейшее достоинство технологии вальцевания уголков – это получение сверхпрочной продукции без единого соединительного шва. Применение в строительных конструкциях вальцованных элементов позволяет экономить материалы, а конфигурация изгиба и геометрическая форма сечения позволяют создавать прочные и красивые сооружения.

Кроме того, гнутые профили ощутимо снижают нагрузку на фундамент. Вальцевание холодным методом значительно сокращает энергозатраты и позволяет сохранить свойства металла: исключается появление горячих и холодных трещин, пор, непроваров. Также сокращаются временные затраты, а процесс строительства проходит намного быстрее.

Развальцовка труб при монтаже теплообменного оборудования

Монтаж труб в теплообменных системах, выполняемый при помощи вальцовочной операции, является достаточно распространенной процедурой, поэтому лучше познакомиться с ней более подробно. Использование такой технологии и качественного инструмента позволяет получить надежные соединения труб со стенками отверстий, выполненных в трубном барабане.

Итак, необходимо выполнить следующие действия.

  • Отрезок трубы устанавливают в отверстие, диаметр которого меньше, чем ее наружный диаметр.
  • Рабочий орган инструмента вводят во внутреннюю часть трубы и начинают выполнять ее расширение. Ее диаметр под действием пластической деформации начинает увеличиваться, и зазор между ее наружной стенкой и стенкой отверстия, в которое она вставлена, исчезает. После выборки зазора деформироваться начинают и стенки отверстия в трубном барабане, на которые оказывает давление расширяющаяся труба. Таким образом, формируется плотное и надежное соединение.
  • Когда вальцуешь при помощи такого инструмента, следует быть очень аккуратным и следить за тем, чтобы стенки трубы под воздействием значительного давления не разрушились. Это может произойти, если ее диаметр увеличивается выше допустимого технологией предела. Избежать таких негативных последствий позволяет не только строгое следование технологическим рекомендациям, но и правильный выбор инструмента.

Итак, под вальцовкой подразумевается достаточно большой перечень технологических операций, для качественного выполнения которых необходимо правильно подбирать соответствующие инструменты и оборудование.

Расчет в excel местоположения подвижного среднего ролика.

Запускаем программу MS Excel или программу OOo Calc, и начинаем работу!

С общими правилами форматирования электронных таблиц, которые применяются в статьях блога, можно ознакомиться здесь.

Прежде всего, хочу заметить, что листогибочные вальцы и профилегибы разных моделей могут иметь подвижные крайние ролики (валки), а могут — подвижный средний ролик (валок). Однако для нашей задачи это не имеет принципиального значения.

На рисунке, расположенном ниже изображена расчетная схема к задаче.

Вальцуемая деталь в начале процесса лежит на двух крайних роликах (валках), имеющих диаметр D. Средний ролик (валок) диаметром d подводится до касания с верхом заготовки. Далее средний ролик (валок) опускается вниз на расстояние равное расчетному размеру H, включается привод вращения роликов, заготовка прокатывается, производится гибка металла, и на выходе получается деталь с заданным радиусом изгиба R!

Расчеты и действия:

6. Вычисляем расчетную вертикальную подачу верхнего ролика (валка)Hрасч в мм  без учета пружинения

в ячейке D9: =D4/2 D6 D7- ((D4/2 D6 D7)^2- (D5/2)^2)^(½)=45,4

Hрасч =D/2 h R— ((D/2 h R)^2- (A/2)^2)^(½)

7. Настраиваем вальцы на этот размер Hрасч и делаем  первый прогон заготовки. Измеряем  или высчитываем по хорде и высоте сегмента получившийся в результате внутренний радиус, который обозначим R0и записываем полученное значение в мм

в ячейку D10: 655

8. Вычисляем какой должна была бы быть расчетная теоретическая вертикальная подача верхнего ролика (валка)H0расч в мм  для изготовления детали с радиусом R0 без учета пружинения

в ячейке D11: =D4/2 D6 D10- ((D4/2 D6 D10)^2- (D5/2)^2)^(½)=41,9

H0расч =D/2 h R0— ((D/2 h R0)^2- (A/2)^2)^(½)

9. Но деталь с внутренним радиусом изгиба R0 получилась при опущенном верхнем валке на размер Hрасч, а не H0расч!!! Считаем поправку на обратное пружинение xв мм

в ячейке D12: =D9-D11=3,5

x =Hрасч — H0расч

10. Так как радиусы R и R0 имеют близкие размеры, то можно с достаточной степенью точности принять эту же величину поправки x для определения окончательного фактического расстояния H, на которое необходимо подать вниз верхний ролик (валок) для получения на вальцованной детали внутреннего радиуса R.

Вычисляем окончательную расчетную вертикальную подачу верхнего ролика (валка)Hв мм c учетом пружинения

в ячейке D13: =D9 D12=48,9

H= Hрасч x

Задача решена! Первая деталь из партии изготовлена за 2 прохода! Найдено местоположение среднего ролика (валка).

Сгибание уголка по радиусу

Гибка металлического уголка по радиусу достаточно сложная технологическая операция, так как любое сгибание — это одновременное сжимание внутреннего и растягивание внешнего слоя металла, а, в случае с профилем в виде уголка, такие процессы никак не могут протекать равномерно, что будет сопровождаться попыткой продольного смещения одного из этих слоев.

  • вовнутрь радиуса кривизны деформации, при этом она будет сильно сжиматься ,
  • наружу радиуса кривизны деформации, соответственно, она будет растягиваться .

Холодное сгибание металлического уголка методом вальцовки на специальном профилегибочном оборудовании позволяет согнуть как стальной уголок, так и профиль из алюминия, получая при этом изделия практически любого радиуса с идеальной формой.

Как согнуть уголок по радиусу своими руками можно посмотреть на этом видео.

Стоит иметь в виду, что как для горячего, так и холодного способа сгибания существуют предельные величины радиусов, которые напрямую зависят от размера полок уголка и его толщины. Так, можно упрощенно рассчитать радиус, на который допустимо загибать уголок, согласно следующим значениям:

  • допустимый радиус для равнополочного уголка должен составлять минимальные 45 размеров ширины полки;
  • для неравнобокового профиля допустимый радиус не может быть меньше 45 размеров ширины полки для большей полки и 50 — для меньшей.

Но лучше и проще руководствоваться значениями, которые приведены в таблицах.

Таблицы минимально допустимых радиусов сгибания стальных уголков в зависимости от типа, размеров и отношения величин полок

Способы гибки уголка

Применяют несколько основных способов получения из металлического уголка конструкций заданной формы и профиля, а именно различают:

  • холодное сгибание,
  • горячее сгибание,
  • придание формы с помощью разрезания, сгибания и сварки готового изделия.

Холодное сгибание металлического уголка, в свою очередь, разделяется на:

  • свободную гибку — это когда уголок сгибают без применения специального оборудования;
  • сгибание с помощью вальцовочного механизма на специализированном профилегибочном станке.

Применение холодной гибки металлического уголка, в отличие от других способов, имеет определенные преимущества, а именно:

  • это наименее затратный метод придания металлу заданной формы, при этом не требуется использования дополнительного оборудования для разогрева, резки, сварки и последующей обработки металла;
  • получаемый в итоге каркас имеет большую прочность, так как при этом исключаются возможные дефекты, характерные при применении разогрева, резки и сварки;
  • готовые конструкции гарантированно служат больший срок из-за того, что при обработке сохраняется целостность структуры металлического профиля;
  • снижается вероятность возникновения очагов коррозии металла со временем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *