51а. минимальные радиусы гибаr угловой равнополочной стали, мм
Материал — сталь Ст3
В числителе приведены значения радиуса гибаRугловой стали полкой наружу, в знаменателе — полкой внутрь.
Толщина пачки, мм | Номер профиля | |||||||||||||
2 | 2,5 | 3,2 | 3,6 | 4 | 4,5 | 5 | 5,6 | 6,3 | 7 | 7,5 | 8 | 9 | 10 | |
3 | 100/120 | 125/150 | — | — | — | — | — | — | — | — | — | — | — | — |
4 | — | 125/150 | 160/200 | 180/220 | 200/240 | 221/270 | 250/300 | 280/340 | 315/380 | — | — | — | — | — |
4,5 | — | — | — | — | — | — | — | — | — | 350/420 | — | — | — | — |
5 | — | — | — | — | — | — | 250/300 | 280/340 | 315/380 | 350/420 | 375/450 | — | ||
5,5 | — | — | — | — | — | — | — | — | — | — | — | 400/480 | — | — |
6 | — | — | — | — | — | — | — | — | 315/380 | 350/420 | 211/450 | 400/480 | 450/540 | — |
6,5 | — | — | — | — | — | — | — | — | — | — | — | — | 500/600 | |
7 | — | — | — | — | — | — | — | — | — | 420/350 | 450/375 | 480/400 | 540/450 | — |
8 | — | — | — | — | — | — | — | — | — | 480/400 | 540/450 | 600/500 | ||
9 | — | — | — | — | — | — | — | — | — | — | 450/375 | — | — | — |
10 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600/500 |
12 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600/500 |
Not found
49.Минимальный радиус R гиба листового проката, мм
Материал | Расположения линии гиба проката в состоянии | |||
отожженном или нормализованном | наклепанном | |||
поперек волокон | вдоль волокон | поперек волокон | вдоль волокон | |
Сталь: СтЗ 20 45 коррозионно-стойкая | 1S | 2S 1.5S 2.6S 2S 3S | 4S | |
Алюминий и его сплавы: мягкие твердые | 1S 1S | 1,55 35 | 1,55 35 | 2,55 45 |
Медь | — | 15 | 15 | 25 |
Латунь: мягкая твердая | — — | 0,85 4,55 | 0,85 4,55 | 0,85 4,55 |
Развернутая длина изогнутого участка детали из листового материала при гибе на угол a определяется по формуле
А=p(R KS)a/180где А —
длина нейтральной линии;R —внутренний радиус гиба;К —коэффициент, определяющий положение нейтрального слоя при гибе (табл.50);S — толщина листового материала, ммПримечание.Минимальные радиусы холодной гибки заготовок устанавливаются по предельно допустимым деформациям крайних волокон. Их применяют только в случае конструктивной необходимости, во всех остальных случаях — увеличенные радиусы гиба.
50. Значение коэффициента К
Минимальный радиус гиба R, мм | Толщина проката S, мм | ||||||||||
0,5 | 1 | 1.5 | 2 | 2,5 | 3 | 4 | 5 | 6 | 8 | 10 | |
1 | 0,375 | 0,350 | — | — | — | — | — | — | — | — | — |
2 | 0,415 | 0,375 | 0,357 | 0,350 | — | — | — | — | — | — | — |
3 | 0,439 | 0,398 | 0,375 | 0,362 | 0,355 | 0,350 | — | — | — | — | — |
4 | 0,459 | 0,415 | 0,391 | 0,374 | 0,365 | 0,360 | 0,358 | — | — | — | — |
5 | 0,471 | 0,428 | 0,404 | 0,386 | 0,375 | 0,367 | 0,357 | 0,350 | — | — | — |
6 | 0,480 | 0,440 | 0,415 | 0,398 | 0,385 | 0,375 | 0,363 | 0,355 | 0,350 | — | — |
8 | 0,459 | 0,433 | 0,415 | 0,403 | 0,391 | 0,375 | 0,365 | 0,358 | 0,350 | — | |
10 | 0,500 | 0,470 | 0,447 | 0,429 | 0,416 | 0,405 | 0,387 | 0,375 | 0,366 | 0,356 | 0,350 |
12 | 0,480 | 0,459 | 0,440 | 0,427 | 0,416 | 0,399 | 0,385 | 0,375 | 0,362 | 0,355 | |
16 | 0,500 | — | 0,473 | 0,459 | 0,444 | 0,433 | 0,416 | 0,403 | 0,392 | 0,375 | 0,365 |
20 | 0,500 | — | 0,470 | 0,459 | 0,447 | 0,430 | 0,415 | 0,405 | 0,388 | 0,375 | |
25 | — | — | 0,500 | — | 0,470 | 0,460 | 0,443 | 0,430 | 0,417 | 0,402 | 0,387 |
28 | — | — | — | 0,500 | 0,476 | 0,466 | 0,450 | 0,436 | 0,425 | 0,408 | 0,395 |
30 | — | — | — | — | 0,480 | 0,470 | 0,455 | 0,440 | 0,430 | 0,412 | 0,400 |
51. Минимальный радиус гиба металлов круглого и квадратного сечений, мм
Диаметр круга d или сторона квадрата a | Ст3 | Ст5 | Сталь 20 | Сталь 45 | Сталь 12Х18Н10Т | Л63 | М1, М2 | |||
R1 | R2 | R1 | R1 | R2 | R1 | R2 | R1 | |||
5 | — | — | — | — | — | — | — | — | 2 | — |
6 | — | — | — | 2 | — | — | — | — | 2 | 2 |
8 | 3 | — | — | 3 | — | 5 | — | 7 | 2 | 2 |
10 | 8 | 10 | — | 8 | 10 | 10 | — | 8 | 6 | 6 |
12 | 10 | 12 | 13 | 10 | 12 | 13 | — | 10 | 6 | 6 |
14 | 10 | 14 | 14 | 10 | 14 | 16 | — | 11 | — | — |
16 | 13 | 16 | 16 | 13 | 16 | 16 | 16 | 13 | 10 | 10 |
18 | 16 | — | 18 | — | — | 18 | — | 14 | — | 10 |
20 | 16 | 20 | 20 | 16 | 20 | 20 | 20 | 16 | 13 | 13 |
22 | 18 | — | 22 | 18 | — | 22 | — | 18 | — | 13 |
25 | 20 | 25 | 25 | — | 25 | 25 | 25 | 20 | 16 | 16 |
28 | — | — | — | 22 | — | 30 | — | 22 | — | 16 |
30 | 25 | 30 | 30 | 25 | 30 | 30 | 30 | 24 | 18 | 18 |
51а. Минимальные радиусы гиба R
угловой равнополочной стали, мм
Материал — сталь Ст3 В числителе приведены значения радиуса гиба R угловой стали полкой наружу, в знаменателе — полкой внутрь |
Толщина полки, мм | Номер профиля | |||||||||||||
2 | 2,5 | 3,2 | 3,6 | 4 | 4,5 | 5 | 5,6 | 6,3 | 7 | 7,5 | 8 | 9 | 10 | |
3 | 100120 | 125150 | — | — | — | — | — | — | — | — | — | — | — | — |
4 | — | 125 150 | 160 200 | 180 220 | 200 240 | 225 270 | 250 300 | 280 340 | 315 380 | — | — | — | — | — |
4,5 | — | — | — | — | — | — | — | — | — | 250 420 | — | — | — | — |
5 | — | — | — | — | — | — | 250 300 | 280 340 | 315 380 | 350 420 | 375 450 | — | — | — |
5,5 | — | — | — | — | — | — | — | — | — | — | — | 400 480 | — | — |
6 | — | — | — | — | — | — | — | — | 315 380 | 350 420 | 375 450 | 400 480 | 450 540 | — |
6,5 | — | — | — | — | — | — | — | — | — | — | — | — | — | 500 600 |
7 | — | — | — | — | — | — | — | — | — | 420 350 | 450 375 | 480 400 | 540 450 | — |
8 | — | — | — | — | — | — | — | — | — | — | — | 480400 | 540 450 | 600 500 |
9 | — | — | — | — | — | — | — | — | — | — | 450 375 | — | — | — |
10 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600 500 |
12 | — | — | — | — | — | — | — | — | — | — | — | — | — | 600 500 |
51б. Минимальный радиус гиба R угловой неравнополочной стали меньшей полкой наружу, мм
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 100 | 140 | 160 | — | — | — | — | — |
5 | — | — | — | — | 250 | — | — | — |
5,5 | — | — | — | — | — | — | 280 | — |
6 | — | — | — | 200 | 250 | 250 | — | 315 |
7 | — | — | — | — | — | — | — | 315 |
8 | — | — | — | 200 | — | — | 280 | 315 |
10 | — | — | — | — | — | — | — | 315 |
51в. Минимальный радиус гиба R угловой неравнополочной стали большой полкой наружу, мм
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 160 | 225 | 250 | — | — | — | — | — |
5 | — | — | — | — | 375 | — | — | — |
5,5 | — | — | — | — | — | — | 450 | — |
6 | — | — | — | 315 | 375 | 400 | — | 500 |
7 | — | — | — | — | — | — | — | 500 |
8 | — | — | — | 315 | — | — | 450 | 500 |
10 | — | — | — | — | — | — | — | 500 |
51г. Минимальный радиус гиба К
угловой неравнополочной стали меньшей полкой внутрь, мм
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 120 | 170 | 195 | — | — | — | — | — |
5 | — | — | — | — | 300 | — | — | — |
5,5 | — | — | — | — | — | — | 340 | — |
6 | — | — | — | 240 | 300 | 300 | — | 380 |
7 | — | — | — | — | — | — | — | 380 |
8 | — | — | — | 240 | — | — | 340 | 380 |
10 | — | — | — | — | — | — | — | 380 |
51д. Минимальный радиус гиба R
угловой неравнополочной стали большей полкой внутрь, ми
Толщина полки, мм | Номер профиля | |||||||
3,2/2 | 4,5/2,8 | 5/3,2 | 6,3/4 | 7,5/5 | 8/5 | 9/5,6 | 10/6,3 | |
4 | 195 | 270 | 300 | — | — | — | — | — |
5 | — | — | — | — | 450 | — | — | — |
5,5 | — | — | — | — | — | — | 545 | — |
6 | — | — | — | 380 | 450 | 480 | — | 600 |
7 | — | — | — | — | — | — | — | 600 |
8 | — | — | — | 380 | — | — | 545 | 600 |
10ы | — | — | — | — | — | — | — | 600 |
51е. Минимальный радиус гиба двутавровой балки, мм (материал — сталь ВСтЗ)
Номер профиля | 10 | 12 | 14 | 16 | 18 | 20 | |
Минимальный радиус гиба R, мм | 250 | 300 | 350 | 400 | 450 | 500 |
51 ж. Минимальный радиус гиба швеллера, мм
Номер профиля | 5П | б,5П | 8П | 10П | 12П | 14П | 16П | 18П | 20П |
Минимальный радиус гиба R, мм | 225 | 250 | 275 | 300 | 325 | 350 | 400 | 435 | 450 |
52. Разделка угловой стали при гибке
Размеры, мм
При свободной гибке уголка полкой: наружу rmin=25h; внутрь rmin=30h; где h-ширина полки в плоскости гиба,мм |
Размеры профиля | r | Угол гибки a, градусы | |||||||||||||||
30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | ||||||||||
l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | l1 | l2 | ||
20х20х3 | 3 | 9 | 2 | 14 | 4 | 20 | 5 | 26 | 6 | 34 | 7 | 44 | 8 | 59 | 9 | 82 | 11 |
25х25х4 32х32х4 36х36х4 40х40х4 45х45х4 50х50х4 | 4 | 11 15 17 20 22 25 | 3 | 17 23 27 30 34 38 | 5 | 22 32 37 42 48 53 | 6 | 32 43 49 55 63 71 | 8 | 42 56 64 72 82 92 | 10 | 55 73 84 94 107 120 | 11 | 73 97 111 125 142 160 | 13 | 102 135 155 174 198 222 | 15 |
63х63х6 75х75х6 | 6 | 31 37 | 4 | 48 58 | 6 | 66 80 | 9 | 88 106 | 10 | 114 138 | 13 | 149 180 | 15 | 198 239 | 17 | 275 333 | 20 |
Значение коэффициента к
Гибкой (изгибанием) называется операция, в результате которой заготовка принимает требуемую форму (конфигурацию) и размеры за счет растяжения наружных слоев металла и сжатия внутренних. Во время изгибания все наружные слои материала растягиваются, увеличиваясь в размере, а внутренние — сжимаются, соответственно уменьшаясь в размере.
И только слои металла, находящиеся вдоль оси изгибаемой заготовки, сохраняют после изгибания свои первоначальные размеры. Важным при гибке является определение размеров заготовок. При этом все расчеты ведутся относительно нейтральной линии, т.е. тех слоев материала заготовки, которые при гибке не изменяются в размерах.
В случае, если на чертеже детали, которая должна быть получена гибкой, не указан размер заготовок, слесарь должен самостоятельно определить этот размер. Расчет производят, подсчитывая размер детали по средней линии (определяют длину прямолинейных участков, подсчитывают длину изогнутых участков и суммируют полученные данные).
Общая длина заготовок при гибке с закруглениями подсчитывается по следующей формуле: L =l1 l2 l3 … ln πr1α1/180 … πrnαn/180, где l1, l2, l3,…, ln — длина прямолинейных участков заготовки; r1,… …, rn — радиусы соответствующих закруглений; α1,…, αn — углы загиба.
Если при гибке угол изгиба не должен иметь закругления, то длину заготовки определяют по следующей формуле: L = l1 l2 l3 … ln (0,5…0,8)Sk, где l1, l2, l, …,ln- длина прямолинейных участков детали; S — толщина материала детали; k — число загибов без закругления. Гибка может выполняться вручную, с применением различных гибочных приспособлений и при помощи специальных гибочных машин.
Инструменты, приспособления и материалы, применяемые при гибке
В качестве инструментов при гибке листового материала толщиной от 0,5 мм, полосового и пруткового материала толщиной до 6,0 мм применяют стальные слесарные молотки с квадратными и круглыми бойками массой от 500 до 1000 г, молотки с мягкими вставками, деревянные молотки, плоскогубцы и круглогубцы.
Выбор инструмента зависит от материала заготовки, размеров ее сечения и конструкции детали, которая должна получиться в результате гибки. Гибку молотком производят в слесарных плоскопараллельных тисках с использованием оправок (рис. 1), форма которых должна соответствовать форме изгибаемой детали с учетом деформации металла.
Рис. 1. Гибка на оправке: а-в — последовательность выполнения операции
Молотки с мягкими вставками и деревянные молотки — киянки применяют для гибки тонколистового материала толщиной до 0,5 мм, заготовок из цветных металлов и предварительно обработанных заготовок. Гибку производят в тисках с применением оправок и накладок (на губки тисков) из мягкого материала.
Плоскогубцы и круглогубцы применяют при гибке профильного проката толщиной менее 0,5 мм и проволоки. Плоскогубцы предназначены для захвата и удержания заготовок в процессе гибки. Они имеют прорезь около шарнира. Наличие прорези позволяет производить откусывание проволоки.
Круглогубцы также обеспечивают захват и удержание заготовки в процессе гибки и, кроме того, позволяют производить гибку проволоки. Ручная гибка в тисках — сложная и трудоемкая операция, поэтому для снижения трудовых затрат и повышения качества ручной гибки используют различные приспособления.
Эти приспособления, как правило, предназначены для выполнения узкого круга операций и изготавливаются специально для них. На рис. 2 показано приспособление для гибки угольника ножовки. Перед началом гибки ролик 2 гибочного приспособления смазывают машинным маслом.
Рис. 2. Приспособление для гибки рамки ножовочного станка: а, б — схемы применения приспособления; в — готовая рамка; 1 — рычаг; 2 — ролик; 3 -заготовка; 4 — оправка; А, Б — соответственно верхнее и нижнее положения рычага По аналогичной схеме работают и другие гибочные приспособления, например, приспособление для гибки кольца из прутка круглого сечения (рис. 3).
Рис. 3. Приспособление для гибки кольца
Наиболее сложной операцией является гибка труб. Необходимость в гибке труб возникает в процессе сборочных и ремонтных операций. Гибку труб производят как в холодном, так и в горячем состоянии. Для предупреждения появления деформаций внутреннего просвета трубы в виде складок и сплющивания стенок гибку осуществляют с применением специальных наполнителей.
Эти особенности обусловливают применение при гибке труб некоторых специфических инструментов, приспособлений и материалов. Приспособления для нагрева труб. Гибку труб в горячем состоянии выполняют после предварительного нагрева токами высокой частоты (ТВЧ), в пламенных печах или горнах, газоацетиленовыми горелками или паяльными лампами непосредственно на месте гибки.
Наиболее рациональным методом нагрева является нагрев ТВЧ, при котором нагрев осуществляется в кольцевом индукторе под действием магнитного поля, создаваемого токами высокой частоты. Наполнители при гибке труб выбирают в зависимости от материала трубы, ее размеров и способа гибки.
В качестве наполнителей используют: • песок — при гибке труб диаметром от 10 мм и более из отожженной стали с радиусом гибки более 200 мм, если она осуществляется и в холодном, и в горячем состоянии; труб диаметром свыше 10 мм из отожженной меди и латуни при радиусе гибки до 100 мм в горячем состоянии; • канифоль — при гибке в холодном состоянии труб из отожженных меди и латуни при радиусе гибки до 100 мм.
Применение наполнителя при гибке труб не требуется, если они изготовлены из отожженной стали, имеют диаметр до 10 мм и радиус гибки более 50 мм. Гибка в этом случае производится в холодном состоянии. Также без наполнителя гнут в холодном состоянии трубы из латуни и меди диаметром до 10 мм при радиусе гибки свыше 100 мм.
Без наполнителя производят гибку труб в специальных приспособлениях, где противодавление, препятствующее появлению деформаций внутреннего просвета трубы, создается другими способами. Простейшим приспособлением для гибки труб является плита, закрепляемая на верстаке или в тисках, с отверстиями, в которых устанавливаются штифты (см. рис. 2.47).
Механизация при гибке
Гибка — весьма трудоемкая и сложная операция, поэтому предпринимаются попытки ее механизировать. Для механизации работ при гибке используют различные гибочные машины. Рассмотрим подробнее конструкции некоторых из них. Листогибочные вальцы (рис. 4) состоят из двух нижних валков 5, которым сообщают вращательное движение при помощи механизма привода 1 и верхнего валка 2, смонтированного на плите 4.
Верхний валок движется от изгибаемого листа 3 и имеет возможность перемещаться по высоте для придания листу заданного радиуса при гибке. Для получения конической формы изгибаемой детали верхнему валку придают наклон, равный углу наклона образующей конуса.
Рис. 4. Листогибочные вальцы: 1 — механизм привода; 2 — верхний валок; 3 — изгибаемый лист; 4 — плита; 5 — нижний
Листогибочные прессы (рис. 5) применяют для выполнения самых разных работ — от гибки кромок до гибки профилей в одной или нескольких плоскостях под разными углами. Гибка профилей осуществляется пуансоном 2 (рис. 5, б), закрепленным на раме ползуна 7, на матрице 3, которая устанавливается на подкладке 4 плиты 5 пресса или непосредственно на плите.
Рис. 5. Листогибочный пресс: а — общий вид; 6 — конструктивная схема; в — формы изгибаемого профиля; 1 — рама ползуна; 2 — пуансон; 3 — матрица; 4 — подкладка; 5 — плита
Роликовые гибочные станки (рис. 6) применяются для гибки профилей различных сечений и бывают трех- и четырехроликовые. Трехроликовый станок для гибки профилей из полос, изготовленных из алюминиевых сплавов толщиной до 2,5 мм, показан на рис. 6, а. Он состоит из верхнего ролика 2, наладка которого относительно двух нажимных роликов 3 и 4 осуществляется вращением рукоятки 1. Прижимы 5 устанавливают так, чтобы ролики свободно скользили по полкам профиля, не давая ему скручиваться при гибке.
Рис. 6. Роликовый гибочный станок: а — трехроликовый: 1 — рукоятка; 2 — верхний ролик; 3,4- нажимные ролики; 5 — прижимы; б — четырехроликовый: 1 — станина; 2, 8 — рукоятки; 3, 5 — ведущие ролики; 4, 7
нажимные ролики; 6 — заготовка
Профили, имеющие форму кругов, спиралей или криволинейные очертания изгибают на четырехроликовых станках (рис. 6, б). Такой станок состоит из станины 1, внутри которой смонтирован приводной механизм для ведущих роликов 3 и 5, подающих заготовку, и двух нажимных роликов 4 и 7, изгибающих заготовку 6.
Требуемый радиус гибки устанавливается вращением рукояток 2 и 8. Станок для гибки труб с индукционным нагревом токами высокой частоты ( ТВЧ ) (рис.7) предназначен для гибки труб с наружным диаметром от 95 до 300 мм и состоит из двух частей — механической и электрической.
Механическая часть — это собственно станок для гибки труб; в электрическую часть входят электрооборудование станка и установка для индукционного нагрева ТВЧ . Станок состоит из сварной станины 1 коробчатого типа, на которой расположены каретка 6 для закрепления трубы, механизм продольной подачи 2, каретка 10 направляющих роликов, каретка 12 нажимного ролика, а также индуктор 9 для индукционного нагрева трубы.
Каретка 6 закрепления трубы перемещается вдоль станины при помощи ходового винта продольной подачи. Закрепление трубы на каретке 6 осуществляется при помощи двух губок 5, одна из которых подвижна. Подвижная губка перемещается при помощи рукоятки 20 вручную и прижимает трубу к неподвижной губке.
Ось изгибаемой трубы 4 эксцентрична по отношению к станине (величина эксцентриситета различна для труб разного диаметра). Каретка 10 направляющих роликов служит для направления движения трубы при гибке и для восприятия реакции от изгибающего усилия.
Она перемещается ходовыми винтами, связанными между собой конической передачей. Один из направляющих роликов 7 укреплен на ползуне и может перемещаться вручную винтом 17. Оба ролика свободно вращаются на своих осях. На каретке направляющих роликов закреплены держатель 8 индуктора, высокочастотный трансформатор (на рисунке не показан) и элементы системы охлаждения 16.
Рис. 7. Станок для гибки труб с индукционным нагревом токами высокой частоты ( ТВЧ ): 1 — станина; 2 — механизм продольной подачи; 3 — удлинитель; 4 — изгибаемая труба; 5 -губки; б, 10- каретки; 7 — направляющие ролики; 8 — держатель индуктора;
Каретка нажимного ролика закреплена неподвижно. По основанию каретки перемещается ползун с запрессованной осью, на которой и вращается нажимной ролик. Перемещение ползуна осуществляется с помощью ходового винта, приводимого в движение механизмом поперечной подачи 14.
На каретке нажимного ролика установлены два конечных выключателя 75 для ограничения хода нажимного ролика 77 в зависимости от выбранного радиуса гибки. Сменный индуктор 9 для нагрева труб представляет собой кольцо из медной трубки, которое охлаждается водой, подводимой по гибкому шлангу.
Для дополнительной поддержки изгибаемой трубы на станке установлен специальный ролик 19, который может перемещаться с помощью рукоятки 18 в зависимости от длины трубы. При гибке очень длинных труб к каретке зажима присоединяют специальные удлинители 3, которые поддерживают свисающую часть трубы.
Правила выполнения работ при ручной гибке металла
1. При изгибании листового и полосового материала в тисках разметочную риску необходимо располагать точно, без перекосов, на уровне губок тисков в сторону изгиба. Полосовой материал толщиной свыше 3,0 мм следует изгибать только в сторону неподвижной губки тисков.
Таблица 1: Типичные дефекты при гибке, причины их появления и способы предупреждения
Дефект | Причины | Способ предупреждения |
При изгибании уголка из полосы он получился перекошенным | Неправильное закрепление заготовки в тисках | Закреплять полосу так, чтобы риска разметки точно располагалась по уровню губок тисков. Перпендикулярность полосы губкам тисков проверять угольником |
Размеры изогнутой детали не соответствуют заданным | Неточный расчет развертки, неправильно выбрана оправка | Расчет развертки детали производить с учетом припуска на загиб и последующую обработку. Точно производить разметку мест изгиба. Применять оправки, точно соответствующие заданным размерам детали |
Вмятины (трещины) при изгибании трубы с наполнителем | Труба недостаточно плотно набита наполнителем | Трубу при заполнении наполнителем (сухим песком) располагать вертикально. Постукивать по трубе со всех сторон молотком |
2. При гибке из полос и прутков деталей типа уголков, скоб разной конфигурации, крючков, колец и других деталей следует предварительно рассчитывать длину элементов и общую длину развертки детали, размечая при этом места изгиба. При необходимости использовать мерные оправки.
3. При массовом изготовлении деталей типа скоб необходимо применять оправки, размеры которых соответствуют размерам элементов детали, что исключает текущую разметку мест изгиба.
4. При гибке листового и полосового металла в приспособлениях необходимо строго придерживаться прилагаемых к ним инструкций.
5. При гибке газовых или водопроводных труб любым методом шов должен располагаться внутри изгиба. Типичные дефекты при гибке, причины их появления и способы предупреждения приведены в таблице 1.
К-фактор в расчете развертки
Возвращение к старой теме расчета длины развертки детали из листового металла при гибке обусловлено необходимостью консолидации некоторой новой и старой информации по этому вопросу. Обобщение и анализ имеющихся данных, думаю, будут полезными для принятия.
. правильных решений на практике.
Длину развертки криволинейного участка принято определять как длину дуги окружности радиусом r по известной со школы формуле:
Lг=π*r*α/180, где
π =3,14…
r – радиус нейтрального слоя, который ни растягивается и не сжимается при изгибе
α– угол изгиба в градусах
Главная проблема – как максимально точно вычислить этот радиус r ? Ведь просто взять и измерить его по понятным и очевидным причинам нельзя!
Если представить радиус r в виде суммы R и t (смотри рисунок выше), а размер t в виде произведения толщины материала s на некоторый коэффициент K , то получим формулы:
r= R t
t = K * s
r= R K * s
Задача сведена к тому, что для ее решения необходимо знать значение коэффициента К .
Коэффициент смещения условного нейтрального слоя K во многих источниках принято ныне называть коротко: К-фактором.
Так как нейтральный слой всегда смещен к центру изгиба (в сторону сжатых волокон), то всегда 0 K≤0,5. Замечено, что К-фактор зависит от отношения внутреннего радиуса гибки R к толщине металла s :
K =f ( R / s )
На графиках ниже наглядно представлена информация, собранная из ряда доступных популярных источников.
Значения К-фактора, как видите, несколько отличаются у разных авторов.
АСКОН (в старых версиях) «согласен» с немецким стандартом DIN 6935, наш РТМ 34-65 опирается на данные Рудмана и Романовского, Анурьев и «примкнувший» к нему T-flex занимают свою позицию в этом вопросе.
Формула из классического сопромата:
K=1/ln(1 s/R) —R/s
— кривая красного цвета, которой, к слову, я раньше пользовался всегда, близка к значениям Рудмана, но всё же выдает несколько большие значения К-фактора в зоне наиболее распространенных на практике отношений R/s .
Данные Рудмана считаются многими коллегами и экспертами в Сети наиболее точными. Возможно. Несколько смущает странный непонятный перегиб кривой Рудмана в весьма интересной для практики области 0,8 R / s Lг=π*(R K*s)*α/180
Во-вторых, если вы не знаете значения K , то программа, определяя длину развертки, в зависимости от способа гибки и жесткости материала предлагает приближенные значения К-фактора согласно таблице, приведенной ниже.
С одной стороны учет свойств металла и способов гибки детали – это несомненный шаг вперед. Но, с другой стороны, жестко фиксированные значения К-фактора в достаточно широких диапазонах R/s – это «минус» точности расчета развертки.
В-третьих, программа помогает легко вычислить по результатам экспериментальных замеров реальное значение К-фактора для вашего материала, инструмента, оснастки, технологии. Именно этот вариант определения коэффициента смещения нейтрального слоя K настоятельно рекомендует автор при жестких допусках на размеры гнутой детали.
K=(Lг*180/(π*α) —R)/s
Обратите внимание: на графике в начале статьи область, выделенная зеленым цветом, соответствует данным из вышеприведенной таблицы программы. Все-таки она ближе к данным Рудмана, Романовского и классического сопромата в диапазоне 0 R / s !
В Сети программа легко находится по поисковому запросу «BendWorks».
На старинной страничке автора сказано, что программа «абсолютно бесплатна», и помещены координаты для связи и адрес электронной почты:
Хотя английский интерфейс программы прост и интуитивно понятен, для упрощения работы прилагаю ссылку на файл с переводом статьи-справки автора «The fine-art of Sheet Metal Belding»:
Минимальный радиус гибки листового металла: таблицы
Мы уже не раз упоминали о важности определения минимально допустимого радиуса для того или иного листового материала до начала гибки. Особое значение это имеет при работе в холодной технике. Игнорирование этих параметров способно привести к порче заготовки.
В таблице 1 приведены минимально допустимые показатели радиуса гибки листового металла по ГОСТу (R) в зависимости от толщины пластины (S) и ее состава.
Длина участка, подвергнутого гибке на угол α, вычисляется следующим образом:
Важно знать, что минимальный радиус гибки листового металла (в т. ч. из стали) при работе в холодной технике устанавливается в соответствии с показателем деформации крайних волокон. Его используют только в случае острой производственной необходимости. В стандартных ситуациях этот параметр устанавливают выше минимального.
Коэффициент положения нейтрального слоя при гибке металла (мм):
S | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 |
R | k | |||||||
1 | 0.35 | – | – | – | – | – | – | – |
2 | 0.375 | 0.350 | – | – | – | – | – | – |
3 | 0,398 | 0.362 | 0.350 | – | – | – | – | – |
4 | 0.415 | 0.374 | 0,36 | 0.358 | – | – | – | – |
5 | 0.428 | 0.386 | 0.367 | 0,357 | 0.350 | – | – | – |
6 | 0.440 | 0.398 | 0.375 | 0,363 | 0.355 | 0.350 | – | – |
8 | 0.459 | 0.415 | 0.391 | 0.375 | 0.365 | 0.358 | 0.350 | – |
10 | 0,47 | 0.429 | 0.405 | 0.387 | 0.375 | 0.366 | 0.356 | 0,35 |
12 | 0.480 | 0.440 | 0.416 | 0.399 | 0,385 | 0,375 | 0.362 | 0.355 |
16 | – | 0.459 | 0.433 | 0.416 | 0.403 | 0,392 | 0,375 | 0,365 |
20 | 0.500 | 0.470 | 0.447 | 0 430 | 0.415 | 0,405 | 0.368 | 0,375 |
25 | – | – | 0.460 | 0.443 | 0.43O | 0.417 | 0.402 | 0.387 |
28 | – | 0.500 | 0.466 | 0 450 | 0.436 | С.435 | 0,408 | 0.395 |
30 | – | – | 0.4/0 | 0 455 | 0.440 | 0.430 | 0,412 | 0.400 |
Технология гибки листового металла: особенности и классификация
Технология гибки, в зависимости от требуемой модификации листового металла, включает в себя следующие виды:
- Одноугловая (V-образная) – считается наиболее простой. Под воздействием силы гиба верхняя поверхность заготовки сжимается, а нижняя – прилегает к стенкам механизма и растягивается. Таким образом достигается нужный радиус.
- Двухугловая (П-образная) – выполняется схожим образом за исключением количества этапов обработки.
- Многоугловая гибка.
- Радиусная гибка листового металла (закатка) – позволяет получить плавный изгиб. Применяется для создания петель, хомутов и т. д.
Такая технология обработки заготовок не требует колоссального усилия, поэтому предварительного нагрева материала не требуется.
Горячая гибка по радиусу применяется лишь для толстых листовых заготовок (12–16 мм), а также малопластичных металлов. К последним относятся дюралюминий, высокоуглеродистые стали и их сплавы.
Такой способ обработки листового материала часто применяют в комплексе с другими операциями, например, резкой, вырубкой или пробивкой. В результате получаются сложные объемные изделия из металла. Для их изготовления прибегают к штампам, которые можно использовать в нескольких переходах.
С точки зрения пространственного позиционирования существует два способа гибки по радиусу:
- Продольная – при этом используется холодная технология работ, что не позволяет обрабатывать толстые листовые заготовки.
- Поперечная – включает в себя несколько этапов: в первую очередь загибаются кромки металлической детали, затем она нагревается. После начинаются непосредственно производственные операции: гибка, осаживание и вытяжка.
Для радиусной гибки листового металла требуется специализированный ручной или промышленный станок. Его конструкция модифицируется в зависимости от требуемой формы изделия.
Работа в холодной технике требует соблюдения оптимального соотношения радиуса изгиба, толщины металла и размера самого листа. Отступление от предельного значения чревато потерей прочностных характеристик заготовки, возможностью появления повреждений.
Придание радиусной формы заготовке под воздействием высоких температур способно изменить структуру материала. Так, во время охлаждения после нагрева связи между молекулами в листе металла становятся более тесными и упорядоченными, что способствует увеличению его твердости, прочности и упругости. Кроме того, в этот момент сокращается удлинение при разрыве. Пластичность материала изменяется мало.
Не рекомендовано активное тепловое воздействие на металл. Если температура близка к температуре плавления листового материала, то его физические свойства резко ухудшаются – получается пережог. Он сопровождается окислением и обезуглероживанием поверхности. Длительный перегрев является причиной образования крупнозернистой структуры материала.
Со стороны процесс гибки металлического профиля по радиусу кажется простым, но это не значит, что он оказывает несущественное воздействие на структуру материала. Во время воздействия в ней возникает напряжение. Сначала оно упругое, а затем приобретает пластический характер. Важно определить баланс этих напряжений и изменений, часто это бывает сложно.
Во время гибки листа по радиусу деформация происходит неравномерно. Так, она более заметна в самих углах и практически неощутима у края пластины. Особенностью работы с тонкими металлическими листами является то, что их верхняя часть под воздействием гиба сжимается, а нижняя – растягивается.
Пространство между ними принято называть нейтральным слоем. Точное определение этого промежутка является одним из необходимых условий выполнения качественного изгиба радиуса.
Для квалифицированной закатки важно знать некоторые особенности процедуры:
- В структуре металлической пластины находятся направленные волокна. Чтобы во время ее обработки не нарушилась целостность материала, лист необходимо расположить поперек волокон или под углом 45° к ним.
- Для каждого листового металла необходимо предварительно определить предел текучести. Его нарушение чревато разрывами.
- В месте воздействия гиба происходит ряд деформаций пластины: нейтральный слой, находящийся в середине листа или в центре его тяжести, смещается в сторону меньшего радиуса; происходит изменение в поперечном сечении; уменьшается толщина материала.
Работа с мелкогабаритными заготовками требует большого мастерства. Важно учитывать, что:
- чем меньше радиус гибки листового металла, тем больше площадь его деформации;
- при большом радиусе изменения затрагивают не всю пластину.
Особенности выполнения работы такого типа важно учитывать при организации процесса штамповки заготовок.