Металл для инструмента гибочного

6. Обработка отверстий

Отверстия в теле металла под крепежные детали (болты, шпильки, винты), а также под последующую обработку (рассверливание, зенкерование, развертывание, нарезание резьбы и растачивание) достигается сверлением. В качестве инструмента при сверлении используют стандартные сверла из быстрорежущей стали диаметром 0,3 — 80 мм.

Перовые

-(плоские) просты в изготовлении, прочны, но не обеспечивают высокой точности и чистоты отверстия. Применяют для сверления неглубоких отверстий.

Спиральные —

совершенны по конструкции, легко выводят стружку по винтовым каналам, малая сила трения о стенку отверстия, не требуют дополнительной обработки отверстия, допускают большое количество переточек.

Сверла изготавливают с цилиндрическими (до d=12 мм), коническими ( 6 — 60 мм) хвостовиками. Сверла изготавливаются из быстрорежущей стали марок Р18, Р9, У10-У12 (мелкие сверла) и с твердой наплавкой твердосплавных пластинок.

Рассверливание

предназначено для увеличения диаметра отверстия заготовок и применяется при обработке отверстий диаметром свыше 30 мм. Сначала сверлят отверстие диаметром (0,2 — 0,3)D, а затем рассверливают это отверстие до заданного диаметра D.

Зенкование —

применяют для снятия фасок у отверстий, получения цилиндрических и конических углублений для головок винтов и заклепок.

Зенкерование —

используют для расточки отверстия и подготовки его под развертывание. Стандартными зенкерами из быстрорежущей стали обрабатывают отверстия диаметром 3 — 100 мм. Зенкер имеет большее число режущих зубьев, чем сверло, поэтому обработка им более производительна, чем рассверливание, а качество зенкерования выше, чем при рассверливании.

Развертывание —

применяют для окончательной обработки предварительно просверленного отверстия и получения точной геометрической формы, размеров и высокой чистоты

поверхности с помощью цилиндрических или конических разверток. Стандартные развертки применяют для обработки отверстий диаметром 1 — 300 мм в заготовках из различных материалов.

Для механической обработки отверстий сверлением, зенкованием используются пневмо-эле4трические машины и станки.

Виды гибки

Гибка определяется как процесс обработки металлов давлением, в результате которого изменяется продольная ось деформируемой заготовки. Различают следующие варианты реализации гибки:

Виды гибок Одноугловая или V -образная (рис.1 а) - двуугловая  или U- образная  (рис.1 б ) - многоугловая  (рис.1 в, г); - криволинейная  (рис.1 д, е, з) и позволяющая получать изделия типа труб (рис.1 ж)
Виды гибок Одноугловая или V -образная (рис.1 а) — двуугловая или U- образная (рис.1 б ) — многоугловая (рис.1 в, г); — криволинейная (рис.1 д, е, з) и позволяющая получать изделия типа труб (рис.1 ж)
  • П-образную (двухугловую).
  • М-образную (одноугловую).
  • Многоугловую гибку.

Все эти разновидности могут выполняться следующими способами:

Гибка калибрующим ударом
Гибка калибрующим ударом
  • Свободной гибкой, при которой центр симметрии заготовки не фиксируется, а сама гибка металла происходит путём нажима рабочего инструмента – пуансона на поверхность изгибаемой заготовки. Конфигурация деформированной заготовки зависит от формы пуансона;
  • Гибка калибрующим ударом, при которой заготовка укладывается в матрицу. Конфигурация матрицы и определяет конечную форму заготовки;
  • В роликовых матрицах, когда поворачивающиеся части рабочего инструмента постепенно формируют ось изогнутой заготовки.

Характерная особенность гибки – резко различное положение сетки макроструктуры в зависимости от направления гибки. Поэтому для мало- и среднепластичных металлов и сплавов направление волокон существенно важно: при совпадении такого направления с направлением перемещения оси деформируемой заготовки разрушение её в ходе штамповки маловероятно.

Гибка профилей

Станок профилегибочный ручной
Станок профилегибочный ручной

Ввиду того, что данные профили имеют повышенное значение момента  сопротивления, традиционные способы гибки тут неприемлемы. Поэтому для гибки используют преимущественно машины ротационного действия. По сравнению с листогибочным оборудованием они имеют то преимущество, что приложение усилия происходит не одновременно по всей поверхности заготовки,  а последовательно. В результате усилие гибки снижается, а требуемый для выбора электродвигателя крутящий момент снижается.

Для небольших заготовок ротационные машины вообще могут иметь ручной привод. Поскольку гибка выполняется по последовательной схеме, то одновременно с деформацией может производиться и правка изделия, что способствует снятию внутренних напряжений  в материале.

Правильно-гибочные машины различают по количеству рабочих валков – их может быть три или четыре. Валки могут устанавливаться по симметричной или асимметричной схеме. Регулировка параметров гибки заготовок производится соответствующим изменением положения оси приводного валка, а также изменением их диаметров и профиля рабочей части.

Валы профилегибочного станка
Валы профилегибочного станка

Несмотря на некоторые сложности автоматизации процесса валковые машины конструктивно очень просты и неэнергоёмки. Для них не требуется также изготовление специализированного инструмента  — штампов.

Оборудование для гибки

В производственных условиях гибку ведут на так называемых листогибочных прессах серии И13. Они могут изготавливаться с механическим или гидравлическим приводом. Механические двухкривошипные прессы состоят из следующих узлов:

Механический листогибочный пресс серии И - 13
Механический листогибочный пресс серии И — 13
  • Сварной двухстоечной станины;
  • Электродвигателя;
  • Клиноременной передачи;
  • Пневмофрикционной системы управления прессом, которая включает в себя сблокированные муфту и тормоз (ввиду относительно небольшого крутящего момента муфта и тормоз часто выполняются однодисковыми);
  • Промежуточного вала, на котором размещается понижающая зубчатая передача;
  • Главного вала, к которому присоединяется основной исполнительный механизм кривошипно-шатунного типа (число шатунов – обычно два);
  • Ползуна, к которому в нижней его части крепится активный рабочий инструмент – пуансон (их может быть несколько) и направляющая плита со втулками.
  • Стола, к которому крепится неподвижная часть штампового блока с матрицами, направляющими колонками и устройствами фиксации заготовки в штампе.
  • Системы смазки и блока управления листогибочным прессом.
Пресс иб1430Б-02
Пресс иб1430Б-02

Листогибочные прессы с гидроприводом (серия И14__) конструктивно мало отличаются от кривошипных, за исключением того, что привод ползуна осуществляется от гидростанции, а сам ползун имеет плунжерное направление. Гибочные прессы с гидроприводом могут обеспечивать изменение скорости перемещения ползуна – от увеличенной на стадии холостого хода, до сниженной в момент начала операции деформирования. Это способствует снижению брака при гибке малопластичных сталей и сплавов.

Параметры гибки и их определение

Для выяснения принципиальной возможности гибки заготовки из конкретного металла или сплава требуется знать:

  • Величину предельного радиуса гиба, и сравнения его с фактической толщиной деформируемой заготовки.
  • Направление волокон прокатки.
  • Исходное значение предела текучести металла.
  • Допускаемые отклонения формы готового изделия после гибки.
Гибка тонколистового металла
Гибка тонколистового металла

Указанные исходные данные необходимы в случае гибки тонколистовых заготовок. Для гибки труб, а также некоторых видов профильного проката – круга, шестигранника, уголка и пр. – необходимо знать также допустимую относительную деформацию профиля после гибки.

Гибка металлов не относится к числу энергоёмких операций штамповки. Усилие процесса невелико, поэтому основным критерием для выбора деформирующего оборудования являются длина рабочей зоны обработки, и скорость перемещения деформирующего инструмента. Во многих случаях тонколистовая гибка заготовок возможна даже на ручных станках – профилегибах, трубогибах и т.д.

Рекомендации по выбору гибочного инструмента часть ii

В первой части этой серии рассматривались минимальные требования к инструменту и системе зажима, а также некоторые аспекты выбора пуансона.

Правила выбора пуансона

В случае изготовления L-образных деталей таких правил нет. Пуансон практически любой формы выполнит свою функцию. Таким образом, выбирая пуансоны для группы деталей, всегда следует рассматривать детали L-образной формы в последнюю очередь, принимая во внимание тот факт, что для их изготовления подойдет пуансон практически любой формы.

При изготовлении таких L-образных деталей используйте пуансон, который также можно применять для производства других деталей, вместо того чтобы добавлять лишние инструменты в комплект инструментов. Помните, что при выборе инструмента меньше всегда лучше, учитывая не только аспект минимизации затрат на инструмент, но также и сокращение времени наладки благодаря уменьшению количества инструментов необходимой формы на рабочем месте (см. рис. 1).

Для деталей другой формы правила выбора пуансона все-таки существуют. Например, в случае изготовления J-образных деталей эти правила следующие (см. рис. 2):

  • Если небольшая верхняя часть длиннее, чем нижняя, потребуется рихтовочный пуансон.
  • Если небольшая верхняя часть короче, чем нижняя, подойдет пуансон любой формы.
  • Если небольшая верхняя часть имеет такую же длину, как нижняя, потребуется остроконечный пуансон.

Как вы заметили, правила выбора пуансона связаны в основном с особенностями заготовки, и именно поэтому важную роль здесь может играть программное обеспечение, моделирующее процесс гибки. Если у вас нет программного обеспечения, моделирующего процесс гибки, можно воспользоваться чертежами поставщика инструмента с размерной сеткой на заднем плане, чтобы проверить влияние пуансона вручную (см. рис. 3).

Правила изготовления Z-образных профилей

Если вы используете обычный набор инструментов, для изготовления Z-образных профилей потребуется два прохода траверсы. Для изготовления деталей такой формы правила следующие (см. рис. 4):

  • Размер центральной части (полки) должен быть больше, чем половина ширины корпуса V-образной матрицы; обратите внимание, что это ширина всего корпуса матрицы, а не канала V-образной матрицы.
  • Боковая часть должна быть меньше, чем сумма высоты V-образной матрицы и высоты райзера.
  • Если размер центральной части (полки) меньше, чем половина ширины корпуса V-образной матрицы; для формирования обоих сгибов за один проход балки потребуется специальный инструмент. Преимуществом использования этих листогибочных инструментов является то, что не требуется переворачивать заготовку. Недостатком является то, что для их применения требуется усилие в три раза превышающее стандартное усилие воздушной гибки

Правила, касающиеся гибки деталей с вырезами и угловыми надрезами

Любой материал, не имеющий опоры внутри V-образных матриц, подвержен деформации; в случае отверстий или других вырезов эта деформация проявляется в форме вздутий (см. рис. 5). Когда отверстия рядом с линией изгиба небольшие, соответствующее вздутие также небольшое.

Когда фланцы, вырезы и угловые надрезы располагаются слишком близко к линии сгиба с учетом толщины металла, можно использовать качающуюся матрицу. Качающиеся матрицы вращаются и поддерживают материал в течение всего процесса гибки, предотвращая тем самым вздутие.

Рис. 1. Для изготовления многих деталей форма пуансона не является ограничивающим фактором при гибке.

На рис. 5 показаны идентичные детали с вырезами, расположенными рядом с линией сгиба; на переднем плане деталь с показательным вздутием, которая была изготовлена с помощью обычной V-образной матрицы, а на заднем плане – деталь, изготовленная с использованием качающейся матрицы.

Высота пуансона для заданной глубины профиля

Высота пуансона становится критически важным параметром при изготовлении трех- и четырехсторонних профилей. В некоторых случаях короткие пуансоны можно использовать для изготовления трехсторонних профилей, если одна из сторон может свисать с листогибочного пресса во время окончательной (третьей) гибки.

Минимальная высота пуансона для изготовления профилей = (глубина профиля/0,7) (толщина траверсы/2)

Если верхние (возвратные) фланцы отсутствуют или они выдаются вперед, для снятия детали после гибки не требуется большого зазора между нижним и верхним штампом. Однако, если возвратные фланцы (сдвинутые назад верхние фланцы) имеются на всех четырех сторонах, необходим достаточный зазор, чтобы повернуть и снять профиль после гибки.

Сочетание гибки и подгиба

Инструменты для гибки и подгиба позволяют изготавливать детали с подогнутыми кромками за один проход, как показано на рис. 7. Но помните, что для подгиба кромок листа толщиной более 0,125 дюйма (3,2 мм), могут потребоваться специальные инструменты, рассчитанные на требующиеся повышенные усилия.

В этом случае правила выбора V-образной матрицы, в целом, такие же, как для стандартных листогибочных инструментов. Для предварительного изгиба на 30 градусов, требующегося для подгиба, в связи с острыми углами, необходимы фланцы несколько большей длины, размер которых составляет примерно 115% от размера канала V-образной матрицы.

Детали без царапин

Почти все обычные листогибочные V-образные матрицы оставляют царапины на деталях, просто потому что металл втягивается в матрицу в процессе гибки. В большинстве случаев эти царапины минимальные и допустимые, а увеличение радиуса приложения усилия может уменьшить их количество.

Рис. 2. Для определенных J-образных деталей применяются особые правила выбора пуансона. Если небольшая верхняя часть имеет такую же длину, как нижняя, потребуется остроконечный пуансон (показан слева). Если небольшая верхняя часть длиннее, чем нижняя, потребуется рихтовочный пуансон (показан справа).

Для областей применения, в которых недопустимо даже минимальное количество царапин, например при гибке окрашенных или полированных материалов, можно использовать нейлоновые вставки для предотвращения появления царапин (см. рис. 8). Гибка без царапин особенно важна при изготовлении критически важных деталей в аэрокосмической промышленности, так как при визуальной проверке инспектору очень трудно отличить царапину от трещины.

Простота – это достоинство

Современный прецизионный инструмент и листогибочные прессы могут обеспечивать непревзойденную точность. При использовании надлежащих инструментов и материалов стабильного качества листогибочные прессы позволяют загибать фланцы под заданным углом с требуемым внутренним радиусом изгиба.

Однако подчеркнем еще раз, что создаваемый при воздушной гибке внутренний радиус изгиба составляет измеряемую в процентах долю от размера канала матрицы, и поэтому очень важно использовать надлежащие инструменты. Соблюдение требований, в которых указывается множество различных радиусов с жесткими допусками, приводит к росту затрат на инструмент.

Учитывая все вышесказанное, разработчики технологий обработки листового металла могут упростить выбор инструмента и весь процесс гибки, следуя нескольким основным правилам при проектировании деталей:

  1. Внутренний радиус изгиба должен быть в 1,5 раза больше толщины металла.
  2. Длина фланца должна быть, как минимум, в 6 раз больше толщины металла. Это применимо также и к отверстиям в детали; то есть, отверстия должны располагаться в стороне от линии сгиба на расстоянии, как минимум, в 6 раз больше толщины материала.
  3. Размер полки Z-образного профиля должен быть, как минимум, в 10 раз больше толщины металла.

Существует множество исключений для этих правил, и каждое имеет свои ограничения. Можно использовать более узкий канал V-образной матрицы, чтобы изготовить детали с меньшим радиусом изгиба или более коротким фланцем, однако при слишком маленьком радиусе изгиба появляется риск искажения линии сгиба и превышения предельно допустимой нагрузки инструмента и листогибочного пресса.

Но к чему усложнять, если не требуется изготавливать деталь с коротким фланцем, узким смещением или малым радиусом? Следуя этим трем простым правилам, вы улучшите угловые характеристики, сократите время наладки и уменьшите затраты на инструмент.

Источник

Способы гибки деталей из металла

Можно выделить два основных способа гибки деталей из листового металла:

  1. «Воздушная», или «свободная» гибка, при которой между заготовкой и стенками матрицы V-образной формы остается воздушный зазор (этот метод используется чаще всего).
  2. «Калибровка», при которой деталь плотно прижимается к стенкам матрицы. Этот метод применяется в течение длительного времени, и в определенных случаях именно этот способ является предпочтительным.
  • Воздушная (свободная) гибка.

К ее достоинствам относится пластичность, к недостаткам – ограниченная точность.

Лист вдавливается на нужную глубину канавки матрицы по оси Y при помощи траверсы с пуансоном. При этом лист не прижимается к стенкам матрицы, между ними остается зазор. Таким образом, на угол гибки деталей из металла влияет положение оси Y, а не геометрия используемого инструмента.

Современные прессы имеют точность настройки оси Y в пределах 0,01 мм. Однако точно сказать, какой угол гибки соответствует определенному положению оси Y, невозможно, так как показатель зависит от различных факторов. На разницу в положении оси Y может влиять настройка хода опускания траверсы, свойства заготовки (толщина, предел прочности, деформационное упрочнение), состояние инструмента для гибки деталей из металла.

Впрочем, это теория. В действительности, сэкономленные на покупке пресса деньги могут быть потрачены на приобретение дополнительного оснащения, например, оси заднего упора или манипуляторов.

К недостаткам этого вида гибки деталей из металла относятся:

  • меньшая точность углов обработки при работе с тонкими заготовками;
  • вероятность неточного повторения при использовании материалов различного качества;
  • невозможность выполнения специфических гибочных операций.

Воздушная гибка подходит для работы с листовыми металлами, толщина которых превышает 1,25 мм; для более тонких рекомендована калибровка.

Рекомендуем статьи по металлообработке

Наименьший внутренний радиус гибки должен превышать толщину заготовки. Если технические требования предполагают равенство внутреннего радиуса толщине листа, то лучше воспользоваться калибровкой. Внутренний радиус менее толщины листа возможен только при работе с мягкими, легко деформируемыми материалами, к примеру, медью.

Получить большой радиус можно, используя пошаговое перемещение заднего упора. Если же необходимым требованием, помимо большого радиуса, является его точность и высокое качество, то воздушную гибку нужно заменить калибровкой с использованием специального инструмента.

К достоинствам этого способа обработки деталей из металла относится высокая точность, к недостаткам – малая гибкость. На угол гиба влияет прилагаемое усилие и используемый инструмент: обрабатываемая заготовка плотно прижата к стенкам V-образной матрицы. Упругая деформация при этом равна нулю, угол гиба не зависит от свойств металла.

Сложность заключается в расчете необходимого усилия гиба. Надежнее всего выполнить пробную гибку короткого образца, воспользовавшись испытательным гидравлическим прессом.

Гибкие материалы:  Установка для рециклинга гибких эндоскопов BANDEQ CYW - 501

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *