Шины гибкие токопроводящие | Публикации | Элек.ру

Основные технические характеристики шин

Основные технические характеристики шин приведены в таблице 1.

Таблица 1. Основные технические характеристики шин

Наименование параметра

Значение параметра

Номинальный ток, А

800, 1300, 1600, 2000

Ток термической стойкости, кА

не менее 31,5

Ток электродинамической стойкости (ударное значение), кА

не менее 80

Время протекания тока термической стойкости, с

3

Климатическое исполнение и категория размещения по ГОСТ 15150-69

ХЛ1

https://www.youtube.com/watch?v=qPBaxwAHEX0

Шины изготавливаются нескольких типоисполнений по сечению / номинальному току. Характеристики шин разных типоисполнений приведены в таблице 2.

По требованиям заказчика, технические характеристики, а также габаритные и присоединительные размеры шин могут иметь значения, отличные от указанных в табл. 1, 2.

Таблица 2. Технические характеристики шин различных типоисполнений

№ исполнения п/п

Поперечное сечение S, мм2 не менее

Номинальный ток, А не менее

Кол-во жгутов в пакете, шт.

Присоединительный размер р, мм

Толщина контактной площадки шины s, мм

Ширина шины b, мм

1

300

800

6

45

7,5

84

2

450

1300

9

45

11

84

3

600

1600

12

60

11

112

4

800

2000

16

60

15

112

Выбор гибких шин по току нагрузки

В зависимости от способа прокладки (в пучке, раздельно и т.п.) и принимаемого допустимого превышения температуры шина надо температурой окружающей среды, шину одного и того же сечения можно использовать на разный длительно допустимый ток. При выборе гибкой шины по току в каталоге производителя можно найти таблицу, где в зависимости от Δt указываются разные допустимые токи.

Например, для шины 32×10 в каталоге Elexo 3 значения: 657A при Δt 30°С, 894A при Δt 50°С 1085A при Δt 70°С

Δt это допустимое превышение температуры шины над температурой окружающей среды. Например, если температура окружающего воздуха 30°С, а ток протекает 1085A, то шина 32×10 нагреется до температуры 100°С. Если, при тех же условиях будет протекать ток 657A, то шина нагреется до 60°С.

Какое Δt выбратьТепловыделение шин участвует в тепловом расчёте НКУ. Чем больше допустимое Δt принято проектировщиком, тем сильнее греется электроустановка. Температура окружающей среды в летнее время может достигать 50°С. Температура шин будет выше минимум на Δt, а при неэффективном охлаждении ещё выше.

Чем выше температура, тем быстрее происходит старение изоляции. Максимальная длительно допустимая температура изоляции шин составляет 105°С. Поэтому мы не рекомендуем выбирать Δt более 50°С. Использования принудительной вентиляции следует избегать, так как возникает необходимость обслуживания и замены фильтров, а в случае выхода вентиляторов из строя возможен локальный перегрев шин. Соответственно, чем меньше Δt принято в расчётах, тем надёжнее электроустановка и выше её срок службы.

Выбор гибкой шины по сечению

Помимо рекомендаций по токовой нагрузке в каталогах производителей гибких шин, существуют рекомендации, указанные в каталогах производителей автоматических выключателей, а так же в нормативных документах. В этой статье мы собрали информацию, которую нам удалось найти.

В техническом руководстве Schneider Electric «Сборка низковольтных комплектных устройств» указаны следующие рекомендации по подключению автоматов гибкими шинами (стр. 100)

ОборудованиеСечение
NSX10020×2 мм
NSX160/25020×3 мм
NSX40032×5 мм
NSX63032×8 мм
INS125/16020×2 мм
INS25020×3 мм
INS40032×5 мм
INS63032×6 мм
Распред. блок Linergy FM 200 А20×3 мм
Распред. блок Linergy FC 3P32×8 мм
Распред. блок Linergy FC 4P32×8 мм
Fupact 25024×5 мм
Fupact 40032×5 мм
Fupact 63032×8 мм

В каталоге ОЕЗ можно найти следующие рекомендации:

Рекомендуемые размеры шин и мин. сечения. Каталог Arion стр. 53
ВыключательНоминалГабаритКол-во шин в пакетеРазмеры Cu шинМин. сечение
ARION WL1106.600 А11 шина60×10 мм600 мм²
ARION WL1108.800 А11 шина60×10 мм600 мм²
ARION WL1110.1 000 А11 шина60×10 мм600 мм²
ARION WL1112.1 250 А12 шины50×8 мм800 мм²
ARION WL1116.1 600 А12 шины50×10 мм1000 мм²
ARION WL1120.2 000 А13 шины50×10 мм1500 мм²
ARION WL1208.800 А21 шина80×8 мм500 мм²
ARION WL1212.1 250 А22 шины80×5 мм800 мм²
ARION WL1216.1 600 А22 шины80×8 мм1000 мм²
ARION WL1220.2 000 А24 шин80×5 мм1500 мм²
ARION WL1225.2 500 А23 шины80×8 мм2000 мм²
ARION WL1232.3 200 А24 шины80×10 мм3000 мм²
ARION WL1340.4 000 А34 шины120×10 мм4000 мм²
ARION WL1350.5 000 А35 шин120×10 мм6000 мм²
ARION WL1363.6 300 А36 шин120×10 мм7200 мм²

ГОСТ IEC 60947-1 2022 «Аппаратура распределения и управления низковольтная» даёт следующие размеры гибких шин в зависимости от токовой нагрузки:

Диапазон испытательных токовШины
ЧислоРазмеры
400…500 А2 шт30×5 мм
500…630 А40×5 мм
630…800 А50×5 мм
800…1000 А60×5 мм
1000…1250 А80×5 мм
1250…1600 А100×5 мм
1600…2000 А3 шт
2000…2500 А4 шт
2500…3150 А3 шт100×10 мм

Гибкие шины, предназначенные для соединения между сборными шинами, выбираются с учётом следующих характеристик: — максимальная температура внутри НКУ 60 °С, что соответствует температуре окружающей среды 35 °С; — максимально допустимая температура изоляции 125 °С.

Источник

Допустимые длительные токи для неизолированных проводов и шин

1.3.22. Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл.

1.3.29-1.3.35. Они приняты из расчета допустимой температуры их нагрева 70 °С при температуре воздуха 25 °С.

Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:

Марка провода

ПА500

Па6000

Ток, А

1340

1680

1.3.23. При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.

1.3.24. При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).

Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80

Номинальное сечение, мм2

Сечение (алюминий/сталь), мм2

Ток, А, для проводов марок

АС, АСКС, АСК, АСКП

М

А и АКП

М

А и АКП

вне помещений

внутри помещений

вне помещений

внутри помещений

10

10/1,8

84

53

95

60

16

16/2,7

111

79

133

105

102

75

25

25/4,2

142

109

183

136

137

106

35

35/6,2

175

135

223

170

173

130

50

50/8

210

165

275

215

219

165

70

70/11

265

210

337

265

268

210

95

95/16

330

260

422

320

341

255

120/19

390

313

485

375

395

300

120/27

375

150/19

450

365

570

440

465

355

120

150/24

450

365

150

150/34

450

185

185/24

520

430

650

500

540

410

185/29

510

425

185/43

515

240

240/32

605

505

760

590

685

490

240/39

610

505

240/56

610

300

300/39

710

600

880

680

740

570

300/48

690

585

300/66

680

330

330/27

730

400

400/22

830

713

1050

815

895

690

400/51

825

705

400/64

860

500

500/27

960

830

980

820

500/64

945

815

600

600/72

1050

920

1100

955

700

700/86

1180

1040

Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений

Диаметр, мм

Круглые шины

Медные трубы

Алюминиевые трубы

Стальные трубы

Ток *, А

Внутренний и наружный диаметры, мм

Ток, А

Внутренний и наружный диаметры, мм

Ток, А

Условный проход, мм

Толщина стенки, мм

Наружный диаметр, мм

Переменный ток, А

медные

алюминиевые

без разреза

с продольным разрезом

6

155/155

120/120

12/15

340

13/16

295

8

2,8

13,5

75

7

195/195

150/150

14/18

460

17/20

345

10

2,8

17,0

90

8

235/235

180/180

16/20

505

18/22

425

15

3,2

21.3

118

10

320/320

245/245

18/22

555

27/30

500

20

3,2

26,8

145

12

415/415

320/320

20/24

600

26/30

575

25

4,0

33,5

180

14

505/505

390/390

22/26

650

25/30

640

32

4,0

42,3

220

15

565/565

435/435

25/30

830

36/40

765

40

4,0

48,0

255

16

610/615

475/475

29/34

925

35/40

850

50

4,5

60,0

320

18

720/725

560/560

35/40

1100

40/45

935

65

4,5

75,5

390

19

780/785

605/610

40/45

1200

45/50

1040

80

4,5

88,5

455

20

835/840

650/655

45/50

1330

50/55

1150

100

5,0

114

670

770

21

900/905

695/700

49/55

1580

54/60

1340

125

5,5

140

800

890

22

955/965

740/745

53/60

1860

64/70

1545

150

5,5

165

900

1000

25

1140/1165

885/900

62/70

2295

74/80

1770

27

1270/1290

980/1000

72/80

2610

72/80

2035

28

1325/1360

1025/1050

75/85

3070

75/85

2400

30

1450/1490

1120/1155

90/95

2460

90/95

1925

35

1770/1865

1370/1450

95/100

3060

90/100

2840

38

1960/2100

1510/1620

40

2080/2260

1610/1750

42

2200/2430

1700/1870

45

2380/2670

1850/2060

* В числителе приведены нагрузки при переменном токе, в знаменателе — при постоянном.

Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения

Размеры, мм

Медные шины

Алюминиевые шины

Стальные шины

Ток *, А, при количестве полос на полюс или фазу

Размеры, мм

Ток *, А

1

2

3

4

1

2

3

4

15х3

210

165

16х2,5

55/70

20х3

275

215

20х2,5

60/90

25х3

340

265

25х2,5

75/110

30х4

475

365/370

20х3

65/100

40х4

625

–/1090

480

–/855

25х3

80/120

40х5

700/705

–/1250

540/545

–/965

30х3

95/140

50х5

860/870

–/1525

–/1895

665/670

–/1180

–/1470

40х3

125/190

50х6

955/960

–/1700

–/2145

740/745

–/1315

–/1655

50х3

155/230

60х6

1125/1145

1740/1990

2240/2495

870/880

1350/1555

1720/1940

60х3

185/280

80х6

1480/1510

2110/2630

2720/3220

1150/1170

1630/2055

2100/2460

70х3

215/320

100х6

1810/1875

2470/3245

3170/3940

1425/1455

1935/2515

2500/3040

75х3

230/345

60х8

1320/1345

2160/2485

2790/3020

1025/1040

1680/1840

2180/2330

80х3

245/365

80х8

1690/1755

2620/3095

3370/3850

1320/1355

2040/2400

2620/2975

90х3

275/410

100х8

2080/2180

3060/3810

3930/4690

1625/1690

2390/2945

3050/3620

100х3

305/460

120х8

2400/2600

3400/4400

4340/5600

1900/2040

2650/3350

3380/4250

20х4

70/115

60х10

1475/1525

2560/2725

3300/3530

1155/1180

2022/2110

2650/2720

22х4

75/125

80х10

1900/1990

3100/3510

3990/4450

1480/1540

2410/2735

3100/3440

25х4

85/140

100х10

2310/2470

3610/4325

4650/5385

5300/6060

1820/1910

2860/3350

3650/4160

4150/4400

30х4

100/165

120х10

2650/2950

4100/5000

5200/6250

5900/6800

2070/2300

3200/3900

4100/4860

4650/5200

40х4

130/220

50х4

165/270

60х4

195/325

70х4

225/375

80х4

260/430

90х4

290/480

100х4

325/535

* В числителе приведены значения переменного тока, в знаменателе — постоянного.

Таблица 1.3.32. Допустимый длительный ток для неизолированных бронзовых и сталебронзовых проводов

Провод

Марка провода

Ток *, А

Бронзовый

Б-50

215

Б-70

265

Б-95

330

Б-120

380

Б-150

430

Б-185

500

Б-240

600

Б-300

700

Сталебронзовый

БС-185

515

БС-240

640

БС-300

750

БС-400

890

БС-500

980

* Токи даны для бронзы с удельным сопротивлением ρ20=0,03 Ом•мм2/м.

Таблица 1.3.33. Допустимый длительный ток для неизолированных стальных проводов

Марка провода

Ток, А

Марка провода

Ток, А

ПСО-3

23

ПС-25

60

ПСО-3,5

26

ПС-35

75

ПСО-4

30

ПС-50

90

ПСО-5

35

ПС-70

125

ПС-95

135

Таблица 1.3.34. Допустимый длительный ток для четырехполосных шин с расположением полос но сторонам квадрата («полый пакет»)

Шины гибкие токопроводящие | Публикации | Элек.ру

Размеры, мм

Поперечное сечение четырехполосной шины, мм2

Ток, А, на пакет шин

h

b

h1

H

медных

алюминиевых

80

8

140

157

2560

5750

4550

80

10

144

160

3200

6400

5100

100

8

160

185

3200

7000

5550

100

10

164

188

4000

7700

6200

120

10

184

216

4800

9050

7300

Таблица 1.3.35. Допустимый длительный ток для шин коробчатого сечения

Шины гибкие токопроводящие | Публикации | Элек.ру

Размеры, мм

Поперечное сечение одной шины, мм2

Ток, А, на две шины

a

b

c

r

медные

алюминиевые

75

35

4

6

520

2730

75

35

5,5

6

695

3250

2670

100

45

4,5

8

775

3620

2820

100

45

6

8

1010

4300

3500

125

55

6,5

10

1370

5500

4640

150

65

7

10

1785

7000

5650

175

80

8

12

2440

8550

6430

200

90

10

14

3435

9900

7550

200

90

12

16

4040

10500

8830

225

105

12,5

16

4880

12500

10300

250

115

12,5

16

5450

10800

Допустимые нагрузки по току на медные шины

При выборе шинопровода покупателю не требуется рассчитывать параметры изделия. Достаточно знать максимально допустимый ток в системе, постоянный или переменный. ПО приведенной ниже таблице можно подобрать подходящее сечение электротехнической шины и купить продукцию в необходимом объеме.

Сечение шинопроводаПостоянный ток, АПеременный ток, А
Медная электротехническая шина 15×3210210
Медная электротехническая шина 20×3275275
Медная электротехническая шина 25×3340340
Медная электротехническая шина 30×4475475
Медная электротехническая шина 40×4625625
Медная электротехническая шина 40×5705700
Медная электротехническая шина 50×5870860
Медная электротехническая шина 50×6960955
Медная электротехническая шина 60×611451125
Медная электротехническая шина 60×813451320
Медная электротехническая шина 60×1015251475
Медная электротехническая шина 80×615101480
Медная электротехническая шина 80×817551690
Медная электротехническая шина 80×1019901900
Медная электротехническая шина 100×618751810
Медная электротехническая шина 100×821802080
Медная электротехническая шина 100×1024702310
Медная электротехническая шина 120×826002400
Медная электротехническая шина 120×1029502650

Компания НТЦМ предлагает купить электротехнические медные шины в большом ассортименте. На складе предприятия представлена продукция в различных типоразмерах. Отличные технические характеристики, конкурентоспособная стоимость, сжатые сроки доставки изделий в любой регион страны – основные преимущества заказа электротехнических шинопроводов в НТЦМ.

Источник

Допустимый длительный ток для шин прямоугольного сечения

Размеры, ммМедные шиныАлюминиевые шиныСтальные шины
Ток*, А, при количестве полос на полюс или фазуРазмеры, ммТок*, А
12341234
15 х 3210165_16×2,555/70
20 х 327521520×2,560/90
25 х 334026525 х 2,575/110
30 х 4475365/37020 х 365/100
40 х 4625-/1090480-/85525 х 380/120
40х 5700/705-/1250540/545-/96530х 395/140
50х 5860/870-/1525-/1895665/670-/1180-/147040×3125/190
50×6955/960-/1700-/2145740/745-/1315-/165550×3155/230″
60×61125/11451740/19902240/2495870/8801350/15551720/194060 х 3185/280
80×61480/15102110/26302720/32201150/11701630/20552100/246070 х 3215/320
100×61810/18752470/32453170/39401425/14551935/25152500/304075 х 3230/345
60 х 81320/13452160/24852790/30201025/10401680/18402180/233080 х 3245/365
80 х 81690/17552620/30953370/38501320/13552040/24002620/297590×3275/410
100×82080/21803060/38103930/46901625/16902390/29453050/3620100×3305/460
120×82400/26003400/4400-4340/56001900/20402650/33503380/425020×470/115
60 х 101475/15252560/27253300/35301155/11802022/21102650/272022 х 475/125
80 х 101900/19903100/35103990/44501480/15402410/27353100/344025 х 485/140
100 х 102310/24703610/43254650/53855300/60601820/19102860/33503650/41604150/440030×4100/165
120 х 102650/29504100/50005200/62505900/68002070/23003200/39004100/48604650/520040×4130/220
50×4165/270
60×4195/325
70×4225/375
80×4260/430
90х 4290/480
100×4325/535

*В числителе приведены значения переменного тока, в знаменателе — постоянного.

Как выбрать главную заземляющую шину — сечение, медь или сталь, подключение.

Как мы все знаем, напряжение – это разность потенциалов. Если потенциалы равны, то и напряжения между этими точками нет, а значит и током вас здесь не ударит.

С этой целью в зданиях и делают систему уравнивания потенциалов (СУП). Она может быть основной (ОСУП) и дополнительной (ДСУП).

Прежде чем предпринимать подобное, необходимо уточнить в управляющей компании, охвачен ли весь дом ОСУП или нет. Вот наглядная картина того, что может происходить с трубами в многоэтажках, при отсутствии общего заземления и уравнивания потенциалов.

Как правило, в новостройках проблем со всем этим нет, и ДСУП является обязательной. А вот в старом жилом фонде ОСУП отсутствует. Поэтому в таких случаях никакой самодеятельности!

Иначе поубиваете соседей при первой утечке тока или повреждении изоляции.

Основная система уравнивания потенциалов соединяет между собой главные инженерные коммуникации на вводе в здание и другие проводящие части оборудования.

Система должна отвечать требованиям двух нормативных документов:

    ПУЭ Глава 1.7 “Заземление и защитные меры безопасности”

Циркуляр был выпущен для разъяснения некоторых положений и рекомендаций ПУЭ, дабы согласовать эти рекомендации с требованием ГОСТ Р51321.1-2000 и ГОСТ Р51732-2001. Разъяснений некоторые рекомендации ПУЭ действительно требуют, поскольку большинство их почему-то трактуют по разному.

Основой ОСУП является главная заземляющая шина – ГЗШ. Какой она должна быть и из какого материала выполнена?

В ПУЭ 1.7.119 говорится о том, что функцию ГЗШ может выполнять РЕ шина внутри распределительного устройства. Зачастую так и делается.

А если ГЗШ вынесена наружу щитовой, отдельно от ВРУ и смонтирована на стене, каких правил при выборе и расчетах здесь придерживаться?

Сначала определимся по материалу изготовления. Пункт 8 циркуляра говорит о том, что отдельно установленную ГЗШ рекомендуется делать из стали.

При этом ПУЭ утверждает обратное, что ГЗШ в первую очередь должна быть медной.

Алюминий при этом категорический запрещен!

Кому же в этой ситуации верить и что в конечном итоге выбрать, сталь или медь?

Выбор всегда остается за вами, но опытные профессиональные электромонтеры все же предпочитают медь. Объясняется это тем, что инспекторы энергонадзора при проверках, охотнее подписывают все бумаги при наличии именно медной ГЗШ.

Лишних вопросов и жарких споров не возникает.

Главная заземляющая шина должна соединять между собой такие элементы как:

    нулевой защитный проводник питающей линии
    проводник, присоединенный к заземляющему устройству повторного заземления

Металлический уголок или полосу, которые закапывают в землю на улице или в подвале дома.

    стальные трубы всех коммуникаций на вводе в здание (водопровод, канализация)
    металлические элементы каркаса здания
    трубы, кожуха, воздуховоды систем вентиляции и кондиционирования

Вот наглядная схема того, что должно быть подключено к ГЗШ проводниками системы уравнивания потенциалов.

А теперь главный вопрос – какого же сечения должна быть заземляющая шина? От чего это зависит, где ее установить и как подключить?

Опять обратимся к документам. ПУЭ говорит, что шина установленная в щитовой, то есть там, где есть доступ только для специально обученного персонала может быть:

    открытой – без каких-либо шкафов
    должна предусматривать возможность индивидуального присоединения всех проводников

То есть, под один болт разрешается сажать не более одного проводника или наконечника.

В то же самое время циркуляр говорит немного иначе. Согласно ему, сечение ГЗШ выбирается по следующей таблице:

Как видите, здесь выбор делается не исходя из сечения PEN питающего кабеля, а в расчете на фазную жилу!

Все мы знаем, что Pen проводник может быть как равен фазному, так и иметь меньший размер. Например, если у вас кабель от 35мм2 и более, то вы имеете полное право для PEN взять сечение в половину меньше фазного.

Хотя чаще всего питающий кабель от подстанции приходит с одинаковыми жилами (4*120мм2, 4*150мм2).

Получается, что если у вас кабель слишком толстый, то по вышеприведенной таблице вовсе не обязательно подбирать такую же большую медную шину ГЗШ. Главное, чтобы она была сечением в половину от фазной жилы.

Но на практике следует учитывать обе ситуации. То есть, делайте так, чтобы ваша ГЗШ отвечала обоим условиям:

    не менее сечения фазного проводника
    и одновременно соответствовала PEN

В этом случае к вам никаких претензий относительно системы заземления и уравнивания потенциалов не будет.

Не всегда ясно, кто будет принимать готовый объект. Насколько он окажется компетентен в своей сфере. Если же делаете, что называется для себя, то выбирайте наиболее оптимальный и экономный вариант, не оглядываясь на возможных инспекторов.

При расчете сечения не забывайте про разницу материалов и марку кабеля.

Питающие вводные кабеля, как правило, выполнены из алюминия. А шину мы решили делать из меди!

Соответственно полезную площадь сечения алюминия, вам придется пересчитать на медь. Помогут в этом деле таблицы ПУЭ для допустимых длительных токов медных и алюминиевых проводов.

Смотрите пропускную способность алюминиевого кабеля и уже по этому току в аналогичной таблице подбираете сечение медной шины.

К примеру, если у вас вводной кабель АВБбШв 4*120мм2, то его PEN проводник имеет сечение 120мм2 и ток I=295А.

По меди это соответствует сечению жилы чуть более 70мм2.

Сообразно этому вам и следует подбирать медную шину ГЗШ. Стандартного размера 4*30мм будет более чем достаточно.

При этом конечно нужно учитывать толщину крепежного болта. Иначе высверлив под него отверстие, у вас может не остаться полезной площади для плотного прилегания наконечника.

В этом случае выбирайте шинку потоньше, но несколько большую по ширине.

Дополнительные размеры медных шин:

При желании сэкономить и выборе в качестве материала ГЗШ не меди, а стали, берите данные по токам из другой таблицы, относящейся к стальной полосе.

Здесь как понимаете, размеры уже будут существенно отличаться.

А вот уже готовая таблица для выбора сечения главной заземляющей шины для тех, кто не хочет ничего считать и желает сразу получить готовый результат.

После расчета сечения и выбора габаритных размеров, необходимо проделать отверстия под болты. Для качественного результат эти отверстия в шине выдавливаются специальным прессом (при его наличии).

Если у вас его нет, ничего страшного. Сначала высверливаете их обычным сверлом, а затем при необходимости расширяете ступенчатым.

Сам шина крепится на поверхность стены или корпуса шкафа при помощи опорных изоляторов.

Длину шины рассчитывайте исходя из количества присоединяемых проводников. Самый главный из них – PE или PEN проводник питающей линии.

После изготовления не забудьте нанести соответствующие надписи, которые в зашифрованном виде будут нести всю полезную информацию по ГЗШ. Вот к примеру маркировка заводской шины:

Как правильно ее расключить в щитовой? Чаще всего с подстанции приходит 4-х жильный кабель с совмещенным нулевым рабочим и защитным проводником. Этот PEN проводник изначально должен сажаться на нулевую защитную шину.

И только уже с нее, делается перемычка на нулевую рабочую шину.

Далее вводная PE шина, соединяется с главной заземляющей шиной отдельным PE проводом.

Запомните, что допускать к монтажу систем заземления и уравнивания потенциалов следует действительно квалифицированных людей, до мелочей знающих и понимающих все нюансы и специфику работы.

Нередко грамотный электрик подобен врачу. От его компетенции напрямую зависят жизни посторонних людей.

Собрать шкаф ГЗШ это весьма непростое занятие и порой на его монтаж и комплектацию уходит времени не меньше, чем на сборку трехфазных распределительных щитов.

Вот весьма неплохое и подробное видео на эту тему.

Источник

Крепление гибких шин в нку

При монтаже гибких шин, так же как и жёстких, необходимо использовать специальные крепления, обеспечивающие стойкость ошиновки к динамическим нагрузкам, возникающих во время короткого замыкания. Дополнительной функцией крепления может быть обеспечение воздушного зазора между шинами, чтобы улучшить естественное охлаждение и избежать перегрева.

Шинодержатель для гибкой шиныИллюстрация крепежа из инструкции Schneider Electric и шинодержателей Rittal, арт.: 3079.010 и 3079.000Наборный шинодержатель для гибких шинНаборные шинодержатели АйДи

Выбор количества держателей и ограничения по токуГибкие шины должны крепиться на не реже, чем через каждые 400 мм, если максимальный расчётных ток короткого замыкания не превышает 45 кА. В случае больших токов, рекомендуется использование жёсткой ошиновки.

Среди производителей комплексных решений для сборки НКУ встречаются рекомендации по эксплуатации гибких шин с допустимым током до 100 кА, при этом оговаривается ряд условий. Расстояние между центрами шин должно быть минимально возможным для снижения влияния электродинамических сил, а количество шинодержателей и их тип должны быть подтверждены испытаниями.

Кабельные стяжки вместо держателейПомимо специальных шинодержателей, для закрепления пакетов гибких шин могут использоваться стяжки. Для избежания прорезания изоляции шин в момент короткого замыкания, необходимо использовать стяжки шириной не менее 9 мм с выдерживаемой нагрузкой не менее 80 кг.

Особенности подбора медных шин

Визуально электротехническая шина из меди имеет форму бруска с сечением в виде прямоугольника. Можно сравнить изделие с листом металла увеличенной длины и толщины. Стандартные размеры ширины бруска составляют от 8 до 250 мм. Минимальная и максимальная толщина равняется 1,2 и 80 мм соответственно.

При выборе электротехнических шин из медных сплавов учитываются следующие критерии:

  • условия эксплуатации продукции, в зависимости от предельной нагрузки по току выбираются изделия с разными соотношениями толщины и ширины;
  • поставка продукции осуществляется в бухтах и отрезках, прессованном и тянутом состоянии. Выбор по данным параметрам осуществляется покупателем на основании собственных предпочтений и особенностей монтажа;
  • максимально допустимая температура нагрева медного шинопровода составляет 70 градусов. При выборе толщины изделия следует учитывать этот показатель, а также температуру окружающей среды. В таблице допустимых нагрузок приведены данные из расчета температуры воздуха в 25 градусов;
  • при наличии финансовых возможностей, лучше выбирать шинопроводы с запасом по токовой нагрузке, с целью избежать выхода изделий из строя при скачках напряжения и коротких замыканиях.

Надежность в эксплуатации медных шин, выполненных в соответствии с требованиями нормативных документов, подтверждена на практике. Качественный материал без посторонних примесей полностью соответствует заявленным характеристикам.

Расчет допустимой силы тока гибкой медной шины

Расчет изолированной медной шины по току нужно проводить в соответствии с рекомендациями производителя, на основании которых выбираются длительно допустимые токи для изолированных шин в поливинилхлоридной изоляции.

Гибкая изолированная шина изготавливается из нескольких слоев тонкого проводника электролитической меди и ПВХ-изоляции с высоким электрическим сопротивлением. Медная гибкая шина применяется для распределения и передачи электроэнергии во всех типах низковольтных установок для всех типов присоединений в случаях, когда нужна повышенная гибкость, эстетика шкафа, а также при работе в коррозионных условий.

Гибкая шина, благодаря своей конструкции, легко принимает требуемую форму и этим самым ускоряется процесс сборки. Гибкая изолированная шина позволяет улучшить внешний вид собираемой схемы в распределительном щите.

Технические характеристики гибкой медной шины:

  • проводник — электролитическая медь
  • изолятор — материал на основе винила с высоким электрическим сопротивлением
  • коэффициент удлинения: 370%
  • максимальная рабочая температура: 105°С
  • минимальная рабочая температура -25°С
  • самогасящийся материал изоляции
  • диэлектрическая прочность изоляции: 20 кВ/мм

Допустимая сила тока гибкой медной шины в изоляции определяется по формуле:

?T(°k) = T2 – T1

где: Т1 — температура внутри шкафа, Т2 — температура шины.

При расчете принимается нормальная температура окружающей среды 25 °С.

Источник

Гибкие материалы:  Радиус гиба металлов гост

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *