Основные технические характеристики шин
Основные технические характеристики шин приведены в таблице 1.
Таблица 1. Основные технические характеристики шин
Наименование параметра | Значение параметра |
---|---|
Номинальный ток, А | 800, 1300, 1600, 2000 |
Ток термической стойкости, кА | не менее 31,5 |
Ток электродинамической стойкости (ударное значение), кА | не менее 80 |
Время протекания тока термической стойкости, с | 3 |
Климатическое исполнение и категория размещения по ГОСТ 15150-69 | ХЛ1 |
https://www.youtube.com/watch?v=qPBaxwAHEX0
Шины изготавливаются нескольких типоисполнений по сечению / номинальному току. Характеристики шин разных типоисполнений приведены в таблице 2.
По требованиям заказчика, технические характеристики, а также габаритные и присоединительные размеры шин могут иметь значения, отличные от указанных в табл. 1, 2.
Таблица 2. Технические характеристики шин различных типоисполнений
№ исполнения п/п | Поперечное сечение S, мм2 не менее | Номинальный ток, А не менее | Кол-во жгутов в пакете, шт. | Присоединительный размер р, мм | Толщина контактной площадки шины s, мм | Ширина шины b, мм |
---|---|---|---|---|---|---|
1 | 300 | 800 | 6 | 45 | 7,5 | 84 |
2 | 450 | 1300 | 9 | 45 | 11 | 84 |
3 | 600 | 1600 | 12 | 60 | 11 | 112 |
4 | 800 | 2000 | 16 | 60 | 15 | 112 |
Выбор гибких шин по току нагрузки
В зависимости от способа прокладки (в пучке, раздельно и т.п.) и принимаемого допустимого превышения температуры шина надо температурой окружающей среды, шину одного и того же сечения можно использовать на разный длительно допустимый ток. При выборе гибкой шины по току в каталоге производителя можно найти таблицу, где в зависимости от Δt указываются разные допустимые токи.
Например, для шины 32×10 в каталоге Elexo 3 значения: 657A при Δt 30°С, 894A при Δt 50°С 1085A при Δt 70°С
Δt это допустимое превышение температуры шины над температурой окружающей среды. Например, если температура окружающего воздуха 30°С, а ток протекает 1085A, то шина 32×10 нагреется до температуры 100°С. Если, при тех же условиях будет протекать ток 657A, то шина нагреется до 60°С.
Какое Δt выбратьТепловыделение шин участвует в тепловом расчёте НКУ. Чем больше допустимое Δt принято проектировщиком, тем сильнее греется электроустановка. Температура окружающей среды в летнее время может достигать 50°С. Температура шин будет выше минимум на Δt, а при неэффективном охлаждении ещё выше.
Чем выше температура, тем быстрее происходит старение изоляции. Максимальная длительно допустимая температура изоляции шин составляет 105°С. Поэтому мы не рекомендуем выбирать Δt более 50°С. Использования принудительной вентиляции следует избегать, так как возникает необходимость обслуживания и замены фильтров, а в случае выхода вентиляторов из строя возможен локальный перегрев шин. Соответственно, чем меньше Δt принято в расчётах, тем надёжнее электроустановка и выше её срок службы.
Выбор гибкой шины по сечению
Помимо рекомендаций по токовой нагрузке в каталогах производителей гибких шин, существуют рекомендации, указанные в каталогах производителей автоматических выключателей, а так же в нормативных документах. В этой статье мы собрали информацию, которую нам удалось найти.
В техническом руководстве Schneider Electric «Сборка низковольтных комплектных устройств» указаны следующие рекомендации по подключению автоматов гибкими шинами (стр. 100)
Оборудование | Сечение |
NSX100 | 20×2 мм |
NSX160/250 | 20×3 мм |
NSX400 | 32×5 мм |
NSX630 | 32×8 мм |
INS125/160 | 20×2 мм |
INS250 | 20×3 мм |
INS400 | 32×5 мм |
INS630 | 32×6 мм |
Распред. блок Linergy FM 200 А | 20×3 мм |
Распред. блок Linergy FC 3P | 32×8 мм |
Распред. блок Linergy FC 4P | 32×8 мм |
Fupact 250 | 24×5 мм |
Fupact 400 | 32×5 мм |
Fupact 630 | 32×8 мм |
В каталоге ОЕЗ можно найти следующие рекомендации:
Рекомендуемые размеры шин и мин. сечения. Каталог Arion стр. 53 | |||||
Выключатель | Номинал | Габарит | Кол-во шин в пакете | Размеры Cu шин | Мин. сечение |
ARION WL1106. | 600 А | 1 | 1 шина | 60×10 мм | 600 мм² |
ARION WL1108. | 800 А | 1 | 1 шина | 60×10 мм | 600 мм² |
ARION WL1110. | 1 000 А | 1 | 1 шина | 60×10 мм | 600 мм² |
ARION WL1112. | 1 250 А | 1 | 2 шины | 50×8 мм | 800 мм² |
ARION WL1116. | 1 600 А | 1 | 2 шины | 50×10 мм | 1000 мм² |
ARION WL1120. | 2 000 А | 1 | 3 шины | 50×10 мм | 1500 мм² |
ARION WL1208. | 800 А | 2 | 1 шина | 80×8 мм | 500 мм² |
ARION WL1212. | 1 250 А | 2 | 2 шины | 80×5 мм | 800 мм² |
ARION WL1216. | 1 600 А | 2 | 2 шины | 80×8 мм | 1000 мм² |
ARION WL1220. | 2 000 А | 2 | 4 шин | 80×5 мм | 1500 мм² |
ARION WL1225. | 2 500 А | 2 | 3 шины | 80×8 мм | 2000 мм² |
ARION WL1232. | 3 200 А | 2 | 4 шины | 80×10 мм | 3000 мм² |
ARION WL1340. | 4 000 А | 3 | 4 шины | 120×10 мм | 4000 мм² |
ARION WL1350. | 5 000 А | 3 | 5 шин | 120×10 мм | 6000 мм² |
ARION WL1363. | 6 300 А | 3 | 6 шин | 120×10 мм | 7200 мм² |
ГОСТ IEC 60947-1 2022 «Аппаратура распределения и управления низковольтная» даёт следующие размеры гибких шин в зависимости от токовой нагрузки:
Диапазон испытательных токов | Шины | |
Число | Размеры | |
400…500 А | 2 шт | 30×5 мм |
500…630 А | 40×5 мм | |
630…800 А | 50×5 мм | |
800…1000 А | 60×5 мм | |
1000…1250 А | 80×5 мм | |
1250…1600 А | 100×5 мм | |
1600…2000 А | 3 шт | |
2000…2500 А | 4 шт | |
2500…3150 А | 3 шт | 100×10 мм |
Гибкие шины, предназначенные для соединения между сборными шинами, выбираются с учётом следующих характеристик: — максимальная температура внутри НКУ 60 °С, что соответствует температуре окружающей среды 35 °С; — максимально допустимая температура изоляции 125 °С.
Источник
Допустимые длительные токи для неизолированных проводов и шин
1.3.22. Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл.
1.3.29-1.3.35. Они приняты из расчета допустимой температуры их нагрева 70 °С при температуре воздуха 25 °С.
Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:
Марка провода | ПА500 | Па6000 |
---|---|---|
Ток, А | 1340 | 1680 |
1.3.23. При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.
1.3.24. При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).
Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80
Номинальное сечение, мм2 | Сечение (алюминий/сталь), мм2 | Ток, А, для проводов марок | |||||
---|---|---|---|---|---|---|---|
АС, АСКС, АСК, АСКП | М | А и АКП | М | А и АКП | |||
вне помещений | внутри помещений | вне помещений | внутри помещений | ||||
10 | 10/1,8 | 84 | 53 | 95 | – | 60 | – |
16 | 16/2,7 | 111 | 79 | 133 | 105 | 102 | 75 |
25 | 25/4,2 | 142 | 109 | 183 | 136 | 137 | 106 |
35 | 35/6,2 | 175 | 135 | 223 | 170 | 173 | 130 |
50 | 50/8 | 210 | 165 | 275 | 215 | 219 | 165 |
70 | 70/11 | 265 | 210 | 337 | 265 | 268 | 210 |
95 | 95/16 | 330 | 260 | 422 | 320 | 341 | 255 |
120/19 | 390 | 313 | 485 | 375 | 395 | 300 | |
120/27 | 375 | – | |||||
150/19 | 450 | 365 | 570 | 440 | 465 | 355 | |
120 | 150/24 | 450 | 365 | ||||
150 | 150/34 | 450 | – | ||||
185 | 185/24 | 520 | 430 | 650 | 500 | 540 | 410 |
185/29 | 510 | 425 | |||||
185/43 | 515 | – | |||||
240 | 240/32 | 605 | 505 | 760 | 590 | 685 | 490 |
240/39 | 610 | 505 | |||||
240/56 | 610 | – | |||||
300 | 300/39 | 710 | 600 | 880 | 680 | 740 | 570 |
300/48 | 690 | 585 | |||||
300/66 | 680 | – | |||||
330 | 330/27 | 730 | – | – | – | – | – |
400 | 400/22 | 830 | 713 | 1050 | 815 | 895 | 690 |
400/51 | 825 | 705 | |||||
400/64 | 860 | – | |||||
500 | 500/27 | 960 | 830 | – | 980 | – | 820 |
500/64 | 945 | 815 | |||||
600 | 600/72 | 1050 | 920 | – | 1100 | – | 955 |
700 | 700/86 | 1180 | 1040 | – | – | – | – |
Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений
Диаметр, мм | Круглые шины | Медные трубы | Алюминиевые трубы | Стальные трубы | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ток *, А | Внутренний и наружный диаметры, мм | Ток, А | Внутренний и наружный диаметры, мм | Ток, А | Условный проход, мм | Толщина стенки, мм | Наружный диаметр, мм | Переменный ток, А | |||
медные | алюминиевые | без разреза | с продольным разрезом | ||||||||
6 | 155/155 | 120/120 | 12/15 | 340 | 13/16 | 295 | 8 | 2,8 | 13,5 | 75 | – |
7 | 195/195 | 150/150 | 14/18 | 460 | 17/20 | 345 | 10 | 2,8 | 17,0 | 90 | – |
8 | 235/235 | 180/180 | 16/20 | 505 | 18/22 | 425 | 15 | 3,2 | 21.3 | 118 | – |
10 | 320/320 | 245/245 | 18/22 | 555 | 27/30 | 500 | 20 | 3,2 | 26,8 | 145 | – |
12 | 415/415 | 320/320 | 20/24 | 600 | 26/30 | 575 | 25 | 4,0 | 33,5 | 180 | – |
14 | 505/505 | 390/390 | 22/26 | 650 | 25/30 | 640 | 32 | 4,0 | 42,3 | 220 | – |
15 | 565/565 | 435/435 | 25/30 | 830 | 36/40 | 765 | 40 | 4,0 | 48,0 | 255 | – |
16 | 610/615 | 475/475 | 29/34 | 925 | 35/40 | 850 | 50 | 4,5 | 60,0 | 320 | – |
18 | 720/725 | 560/560 | 35/40 | 1100 | 40/45 | 935 | 65 | 4,5 | 75,5 | 390 | – |
19 | 780/785 | 605/610 | 40/45 | 1200 | 45/50 | 1040 | 80 | 4,5 | 88,5 | 455 | – |
20 | 835/840 | 650/655 | 45/50 | 1330 | 50/55 | 1150 | 100 | 5,0 | 114 | 670 | 770 |
21 | 900/905 | 695/700 | 49/55 | 1580 | 54/60 | 1340 | 125 | 5,5 | 140 | 800 | 890 |
22 | 955/965 | 740/745 | 53/60 | 1860 | 64/70 | 1545 | 150 | 5,5 | 165 | 900 | 1000 |
25 | 1140/1165 | 885/900 | 62/70 | 2295 | 74/80 | 1770 | – | – | – | – | – |
27 | 1270/1290 | 980/1000 | 72/80 | 2610 | 72/80 | 2035 | – | – | – | – | – |
28 | 1325/1360 | 1025/1050 | 75/85 | 3070 | 75/85 | 2400 | – | – | – | – | – |
30 | 1450/1490 | 1120/1155 | 90/95 | 2460 | 90/95 | 1925 | – | – | – | – | – |
35 | 1770/1865 | 1370/1450 | 95/100 | 3060 | 90/100 | 2840 | – | – | – | – | – |
38 | 1960/2100 | 1510/1620 | – | – | – | – | – | – | – | – | – |
40 | 2080/2260 | 1610/1750 | – | – | – | – | – | – | – | – | – |
42 | 2200/2430 | 1700/1870 | – | – | – | – | – | – | – | – | – |
45 | 2380/2670 | 1850/2060 | – | – | – | – | – | – | – | – | – |
* В числителе приведены нагрузки при переменном токе, в знаменателе — при постоянном.
Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения
Размеры, мм | Медные шины | Алюминиевые шины | Стальные шины | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ток *, А, при количестве полос на полюс или фазу | Размеры, мм | Ток *, А | ||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
15х3 | 210 | – | – | – | 165 | – | – | – | 16х2,5 | 55/70 |
20х3 | 275 | – | – | – | 215 | – | – | – | 20х2,5 | 60/90 |
25х3 | 340 | – | – | – | 265 | – | – | – | 25х2,5 | 75/110 |
30х4 | 475 | – | – | – | 365/370 | – | – | – | 20х3 | 65/100 |
40х4 | 625 | –/1090 | – | – | 480 | –/855 | – | – | 25х3 | 80/120 |
40х5 | 700/705 | –/1250 | – | – | 540/545 | –/965 | – | – | 30х3 | 95/140 |
50х5 | 860/870 | –/1525 | –/1895 | – | 665/670 | –/1180 | –/1470 | – | 40х3 | 125/190 |
50х6 | 955/960 | –/1700 | –/2145 | – | 740/745 | –/1315 | –/1655 | – | 50х3 | 155/230 |
60х6 | 1125/1145 | 1740/1990 | 2240/2495 | – | 870/880 | 1350/1555 | 1720/1940 | – | 60х3 | 185/280 |
80х6 | 1480/1510 | 2110/2630 | 2720/3220 | – | 1150/1170 | 1630/2055 | 2100/2460 | – | 70х3 | 215/320 |
100х6 | 1810/1875 | 2470/3245 | 3170/3940 | – | 1425/1455 | 1935/2515 | 2500/3040 | – | 75х3 | 230/345 |
60х8 | 1320/1345 | 2160/2485 | 2790/3020 | – | 1025/1040 | 1680/1840 | 2180/2330 | – | 80х3 | 245/365 |
80х8 | 1690/1755 | 2620/3095 | 3370/3850 | – | 1320/1355 | 2040/2400 | 2620/2975 | – | 90х3 | 275/410 |
100х8 | 2080/2180 | 3060/3810 | 3930/4690 | – | 1625/1690 | 2390/2945 | 3050/3620 | – | 100х3 | 305/460 |
120х8 | 2400/2600 | 3400/4400 | 4340/5600 | – | 1900/2040 | 2650/3350 | 3380/4250 | – | 20х4 | 70/115 |
60х10 | 1475/1525 | 2560/2725 | 3300/3530 | – | 1155/1180 | 2022/2110 | 2650/2720 | – | 22х4 | 75/125 |
80х10 | 1900/1990 | 3100/3510 | 3990/4450 | – | 1480/1540 | 2410/2735 | 3100/3440 | – | 25х4 | 85/140 |
100х10 | 2310/2470 | 3610/4325 | 4650/5385 | 5300/6060 | 1820/1910 | 2860/3350 | 3650/4160 | 4150/4400 | 30х4 | 100/165 |
120х10 | 2650/2950 | 4100/5000 | 5200/6250 | 5900/6800 | 2070/2300 | 3200/3900 | 4100/4860 | 4650/5200 | 40х4 | 130/220 |
50х4 | 165/270 | |||||||||
60х4 | 195/325 | |||||||||
70х4 | 225/375 | |||||||||
80х4 | 260/430 | |||||||||
90х4 | 290/480 | |||||||||
100х4 | 325/535 |
* В числителе приведены значения переменного тока, в знаменателе — постоянного.
Таблица 1.3.32. Допустимый длительный ток для неизолированных бронзовых и сталебронзовых проводов
Провод | Марка провода | Ток *, А |
---|---|---|
Бронзовый | Б-50 | 215 |
Б-70 | 265 | |
Б-95 | 330 | |
Б-120 | 380 | |
Б-150 | 430 | |
Б-185 | 500 | |
Б-240 | 600 | |
Б-300 | 700 | |
Сталебронзовый | БС-185 | 515 |
БС-240 | 640 | |
БС-300 | 750 | |
БС-400 | 890 | |
БС-500 | 980 |
* Токи даны для бронзы с удельным сопротивлением ρ20=0,03 Ом•мм2/м.
Таблица 1.3.33. Допустимый длительный ток для неизолированных стальных проводов
Марка провода | Ток, А | Марка провода | Ток, А |
---|---|---|---|
ПСО-3 | 23 | ПС-25 | 60 |
ПСО-3,5 | 26 | ПС-35 | 75 |
ПСО-4 | 30 | ПС-50 | 90 |
ПСО-5 | 35 | ПС-70 | 125 |
ПС-95 | 135 |
Таблица 1.3.34. Допустимый длительный ток для четырехполосных шин с расположением полос но сторонам квадрата («полый пакет»)
Размеры, мм | Поперечное сечение четырехполосной шины, мм2 | Ток, А, на пакет шин | ||||
---|---|---|---|---|---|---|
h | b | h1 | H | медных | алюминиевых | |
80 | 8 | 140 | 157 | 2560 | 5750 | 4550 |
80 | 10 | 144 | 160 | 3200 | 6400 | 5100 |
100 | 8 | 160 | 185 | 3200 | 7000 | 5550 |
100 | 10 | 164 | 188 | 4000 | 7700 | 6200 |
120 | 10 | 184 | 216 | 4800 | 9050 | 7300 |
Таблица 1.3.35. Допустимый длительный ток для шин коробчатого сечения
Размеры, мм | Поперечное сечение одной шины, мм2 | Ток, А, на две шины | ||||
---|---|---|---|---|---|---|
a | b | c | r | медные | алюминиевые | |
75 | 35 | 4 | 6 | 520 | 2730 | – |
75 | 35 | 5,5 | 6 | 695 | 3250 | 2670 |
100 | 45 | 4,5 | 8 | 775 | 3620 | 2820 |
100 | 45 | 6 | 8 | 1010 | 4300 | 3500 |
125 | 55 | 6,5 | 10 | 1370 | 5500 | 4640 |
150 | 65 | 7 | 10 | 1785 | 7000 | 5650 |
175 | 80 | 8 | 12 | 2440 | 8550 | 6430 |
200 | 90 | 10 | 14 | 3435 | 9900 | 7550 |
200 | 90 | 12 | 16 | 4040 | 10500 | 8830 |
225 | 105 | 12,5 | 16 | 4880 | 12500 | 10300 |
250 | 115 | 12,5 | 16 | 5450 | – | 10800 |
Допустимые нагрузки по току на медные шины
При выборе шинопровода покупателю не требуется рассчитывать параметры изделия. Достаточно знать максимально допустимый ток в системе, постоянный или переменный. ПО приведенной ниже таблице можно подобрать подходящее сечение электротехнической шины и купить продукцию в необходимом объеме.
Сечение шинопровода | Постоянный ток, А | Переменный ток, А |
---|---|---|
Медная электротехническая шина 15×3 | 210 | 210 |
Медная электротехническая шина 20×3 | 275 | 275 |
Медная электротехническая шина 25×3 | 340 | 340 |
Медная электротехническая шина 30×4 | 475 | 475 |
Медная электротехническая шина 40×4 | 625 | 625 |
Медная электротехническая шина 40×5 | 705 | 700 |
Медная электротехническая шина 50×5 | 870 | 860 |
Медная электротехническая шина 50×6 | 960 | 955 |
Медная электротехническая шина 60×6 | 1145 | 1125 |
Медная электротехническая шина 60×8 | 1345 | 1320 |
Медная электротехническая шина 60×10 | 1525 | 1475 |
Медная электротехническая шина 80×6 | 1510 | 1480 |
Медная электротехническая шина 80×8 | 1755 | 1690 |
Медная электротехническая шина 80×10 | 1990 | 1900 |
Медная электротехническая шина 100×6 | 1875 | 1810 |
Медная электротехническая шина 100×8 | 2180 | 2080 |
Медная электротехническая шина 100×10 | 2470 | 2310 |
Медная электротехническая шина 120×8 | 2600 | 2400 |
Медная электротехническая шина 120×10 | 2950 | 2650 |
Компания НТЦМ предлагает купить электротехнические медные шины в большом ассортименте. На складе предприятия представлена продукция в различных типоразмерах. Отличные технические характеристики, конкурентоспособная стоимость, сжатые сроки доставки изделий в любой регион страны – основные преимущества заказа электротехнических шинопроводов в НТЦМ.
Источник
Допустимый длительный ток для шин прямоугольного сечения
Размеры, мм | Медные шины | Алюминиевые шины | Стальные шины | |||||||
Ток*, А, при количестве полос на полюс или фазу | Размеры, мм | Ток*, А | ||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
15 х 3 | 210 | 165 | _ | 16×2,5 | 55/70 | |||||
20 х 3 | 275 | — | — | — | 215 | — | — | — | 20×2,5 | 60/90 |
25 х 3 | 340 | — | — | — | 265 | — | — | — | 25 х 2,5 | 75/110 |
30 х 4 | 475 | — | — | — | 365/370 | — | — | — | 20 х 3 | 65/100 |
40 х 4 | 625 | -/1090 | — | — | 480 | -/855 | — | — | 25 х 3 | 80/120 |
40х 5 | 700/705 | -/1250 | — | — | 540/545 | -/965 | — | — | 30х 3 | 95/140 |
50х 5 | 860/870 | -/1525 | -/1895 | — | 665/670 | -/1180 | -/1470 | — | 40×3 | 125/190 |
50×6 | 955/960 | -/1700 | -/2145 | — | 740/745 | -/1315 | -/1655 | — | 50×3 | 155/230″ |
60×6 | 1125/1145 | 1740/1990 | 2240/2495 | — | 870/880 | 1350/1555 | 1720/1940 | — | 60 х 3 | 185/280 |
80×6 | 1480/1510 | 2110/2630 | 2720/3220 | — | 1150/1170 | 1630/2055 | 2100/2460 | — | 70 х 3 | 215/320 |
100×6 | 1810/1875 | 2470/3245 | 3170/3940 | — | 1425/1455 | 1935/2515 | 2500/3040 | — | 75 х 3 | 230/345 |
60 х 8 | 1320/1345 | 2160/2485 | 2790/3020 | — | 1025/1040 | 1680/1840 | 2180/2330 | — | 80 х 3 | 245/365 |
80 х 8 | 1690/1755 | 2620/3095 | 3370/3850 | — | 1320/1355 | 2040/2400 | 2620/2975 | — | 90×3 | 275/410 |
100×8 | 2080/2180 | 3060/3810 | 3930/4690 | — | 1625/1690 | 2390/2945 | 3050/3620 | — | 100×3 | 305/460 |
120×8 | 2400/2600 | 3400/4400- | 4340/5600 | — | 1900/2040 | 2650/3350 | 3380/4250 | — | 20×4 | 70/115 |
60 х 10 | 1475/1525 | 2560/2725 | 3300/3530 | — | 1155/1180 | 2022/2110 | 2650/2720 | — | 22 х 4 | 75/125 |
80 х 10 | 1900/1990 | 3100/3510 | 3990/4450 | — | 1480/1540 | 2410/2735 | 3100/3440 | — | 25 х 4 | 85/140 |
100 х 10 | 2310/2470 | 3610/4325 | 4650/5385 | 5300/6060 | 1820/1910 | 2860/3350 | 3650/4160 | 4150/4400 | 30×4 | 100/165 |
120 х 10 | 2650/2950 | 4100/5000 | 5200/6250 | 5900/6800 | 2070/2300 | 3200/3900 | 4100/4860 | 4650/5200 | 40×4 | 130/220 |
50×4 | 165/270 | |||||||||
60×4 | 195/325 | |||||||||
70×4 | 225/375 | |||||||||
80×4 | 260/430 | |||||||||
90х 4 | 290/480 | |||||||||
100×4 | 325/535 |
*В числителе приведены значения переменного тока, в знаменателе — постоянного.
Как выбрать главную заземляющую шину — сечение, медь или сталь, подключение.
Как мы все знаем, напряжение – это разность потенциалов. Если потенциалы равны, то и напряжения между этими точками нет, а значит и током вас здесь не ударит.
С этой целью в зданиях и делают систему уравнивания потенциалов (СУП). Она может быть основной (ОСУП) и дополнительной (ДСУП).
Прежде чем предпринимать подобное, необходимо уточнить в управляющей компании, охвачен ли весь дом ОСУП или нет. Вот наглядная картина того, что может происходить с трубами в многоэтажках, при отсутствии общего заземления и уравнивания потенциалов.
Как правило, в новостройках проблем со всем этим нет, и ДСУП является обязательной. А вот в старом жилом фонде ОСУП отсутствует. Поэтому в таких случаях никакой самодеятельности!
Иначе поубиваете соседей при первой утечке тока или повреждении изоляции.
Основная система уравнивания потенциалов соединяет между собой главные инженерные коммуникации на вводе в здание и другие проводящие части оборудования.
Система должна отвечать требованиям двух нормативных документов:
- ПУЭ Глава 1.7 “Заземление и защитные меры безопасности”
Циркуляр был выпущен для разъяснения некоторых положений и рекомендаций ПУЭ, дабы согласовать эти рекомендации с требованием ГОСТ Р51321.1-2000 и ГОСТ Р51732-2001. Разъяснений некоторые рекомендации ПУЭ действительно требуют, поскольку большинство их почему-то трактуют по разному.
Основой ОСУП является главная заземляющая шина – ГЗШ. Какой она должна быть и из какого материала выполнена?
В ПУЭ 1.7.119 говорится о том, что функцию ГЗШ может выполнять РЕ шина внутри распределительного устройства. Зачастую так и делается.
А если ГЗШ вынесена наружу щитовой, отдельно от ВРУ и смонтирована на стене, каких правил при выборе и расчетах здесь придерживаться?
Сначала определимся по материалу изготовления. Пункт 8 циркуляра говорит о том, что отдельно установленную ГЗШ рекомендуется делать из стали.
При этом ПУЭ утверждает обратное, что ГЗШ в первую очередь должна быть медной.
Алюминий при этом категорический запрещен!
Кому же в этой ситуации верить и что в конечном итоге выбрать, сталь или медь?
Выбор всегда остается за вами, но опытные профессиональные электромонтеры все же предпочитают медь. Объясняется это тем, что инспекторы энергонадзора при проверках, охотнее подписывают все бумаги при наличии именно медной ГЗШ.
Лишних вопросов и жарких споров не возникает.
Главная заземляющая шина должна соединять между собой такие элементы как:
- нулевой защитный проводник питающей линии
- проводник, присоединенный к заземляющему устройству повторного заземления
Металлический уголок или полосу, которые закапывают в землю на улице или в подвале дома.
- стальные трубы всех коммуникаций на вводе в здание (водопровод, канализация)
- металлические элементы каркаса здания
- трубы, кожуха, воздуховоды систем вентиляции и кондиционирования
Вот наглядная схема того, что должно быть подключено к ГЗШ проводниками системы уравнивания потенциалов.
А теперь главный вопрос – какого же сечения должна быть заземляющая шина? От чего это зависит, где ее установить и как подключить?
Опять обратимся к документам. ПУЭ говорит, что шина установленная в щитовой, то есть там, где есть доступ только для специально обученного персонала может быть:
- открытой – без каких-либо шкафов
- должна предусматривать возможность индивидуального присоединения всех проводников
То есть, под один болт разрешается сажать не более одного проводника или наконечника.
В то же самое время циркуляр говорит немного иначе. Согласно ему, сечение ГЗШ выбирается по следующей таблице:
Как видите, здесь выбор делается не исходя из сечения PEN питающего кабеля, а в расчете на фазную жилу!
Все мы знаем, что Pen проводник может быть как равен фазному, так и иметь меньший размер. Например, если у вас кабель от 35мм2 и более, то вы имеете полное право для PEN взять сечение в половину меньше фазного.
Хотя чаще всего питающий кабель от подстанции приходит с одинаковыми жилами (4*120мм2, 4*150мм2).
Получается, что если у вас кабель слишком толстый, то по вышеприведенной таблице вовсе не обязательно подбирать такую же большую медную шину ГЗШ. Главное, чтобы она была сечением в половину от фазной жилы.
Но на практике следует учитывать обе ситуации. То есть, делайте так, чтобы ваша ГЗШ отвечала обоим условиям:
- не менее сечения фазного проводника
- и одновременно соответствовала PEN
В этом случае к вам никаких претензий относительно системы заземления и уравнивания потенциалов не будет.
Не всегда ясно, кто будет принимать готовый объект. Насколько он окажется компетентен в своей сфере. Если же делаете, что называется для себя, то выбирайте наиболее оптимальный и экономный вариант, не оглядываясь на возможных инспекторов.
При расчете сечения не забывайте про разницу материалов и марку кабеля.
Питающие вводные кабеля, как правило, выполнены из алюминия. А шину мы решили делать из меди!
Соответственно полезную площадь сечения алюминия, вам придется пересчитать на медь. Помогут в этом деле таблицы ПУЭ для допустимых длительных токов медных и алюминиевых проводов.
Смотрите пропускную способность алюминиевого кабеля и уже по этому току в аналогичной таблице подбираете сечение медной шины.
К примеру, если у вас вводной кабель АВБбШв 4*120мм2, то его PEN проводник имеет сечение 120мм2 и ток I=295А.
По меди это соответствует сечению жилы чуть более 70мм2.
Сообразно этому вам и следует подбирать медную шину ГЗШ. Стандартного размера 4*30мм будет более чем достаточно.
При этом конечно нужно учитывать толщину крепежного болта. Иначе высверлив под него отверстие, у вас может не остаться полезной площади для плотного прилегания наконечника.
В этом случае выбирайте шинку потоньше, но несколько большую по ширине.
Дополнительные размеры медных шин:
При желании сэкономить и выборе в качестве материала ГЗШ не меди, а стали, берите данные по токам из другой таблицы, относящейся к стальной полосе.
Здесь как понимаете, размеры уже будут существенно отличаться.
А вот уже готовая таблица для выбора сечения главной заземляющей шины для тех, кто не хочет ничего считать и желает сразу получить готовый результат.
После расчета сечения и выбора габаритных размеров, необходимо проделать отверстия под болты. Для качественного результат эти отверстия в шине выдавливаются специальным прессом (при его наличии).
Если у вас его нет, ничего страшного. Сначала высверливаете их обычным сверлом, а затем при необходимости расширяете ступенчатым.
Сам шина крепится на поверхность стены или корпуса шкафа при помощи опорных изоляторов.
Длину шины рассчитывайте исходя из количества присоединяемых проводников. Самый главный из них – PE или PEN проводник питающей линии.
После изготовления не забудьте нанести соответствующие надписи, которые в зашифрованном виде будут нести всю полезную информацию по ГЗШ. Вот к примеру маркировка заводской шины:
Как правильно ее расключить в щитовой? Чаще всего с подстанции приходит 4-х жильный кабель с совмещенным нулевым рабочим и защитным проводником. Этот PEN проводник изначально должен сажаться на нулевую защитную шину.
И только уже с нее, делается перемычка на нулевую рабочую шину.
Далее вводная PE шина, соединяется с главной заземляющей шиной отдельным PE проводом.
Запомните, что допускать к монтажу систем заземления и уравнивания потенциалов следует действительно квалифицированных людей, до мелочей знающих и понимающих все нюансы и специфику работы.
Нередко грамотный электрик подобен врачу. От его компетенции напрямую зависят жизни посторонних людей.
Собрать шкаф ГЗШ это весьма непростое занятие и порой на его монтаж и комплектацию уходит времени не меньше, чем на сборку трехфазных распределительных щитов.
Вот весьма неплохое и подробное видео на эту тему.
Источник
Крепление гибких шин в нку
При монтаже гибких шин, так же как и жёстких, необходимо использовать специальные крепления, обеспечивающие стойкость ошиновки к динамическим нагрузкам, возникающих во время короткого замыкания. Дополнительной функцией крепления может быть обеспечение воздушного зазора между шинами, чтобы улучшить естественное охлаждение и избежать перегрева.
Иллюстрация крепежа из инструкции Schneider Electric и шинодержателей Rittal, арт.: 3079.010 и 3079.000Наборные шинодержатели АйДи
Выбор количества держателей и ограничения по токуГибкие шины должны крепиться на не реже, чем через каждые 400 мм, если максимальный расчётных ток короткого замыкания не превышает 45 кА. В случае больших токов, рекомендуется использование жёсткой ошиновки.
Среди производителей комплексных решений для сборки НКУ встречаются рекомендации по эксплуатации гибких шин с допустимым током до 100 кА, при этом оговаривается ряд условий. Расстояние между центрами шин должно быть минимально возможным для снижения влияния электродинамических сил, а количество шинодержателей и их тип должны быть подтверждены испытаниями.
Кабельные стяжки вместо держателейПомимо специальных шинодержателей, для закрепления пакетов гибких шин могут использоваться стяжки. Для избежания прорезания изоляции шин в момент короткого замыкания, необходимо использовать стяжки шириной не менее 9 мм с выдерживаемой нагрузкой не менее 80 кг.
Особенности подбора медных шин
Визуально электротехническая шина из меди имеет форму бруска с сечением в виде прямоугольника. Можно сравнить изделие с листом металла увеличенной длины и толщины. Стандартные размеры ширины бруска составляют от 8 до 250 мм. Минимальная и максимальная толщина равняется 1,2 и 80 мм соответственно.
При выборе электротехнических шин из медных сплавов учитываются следующие критерии:
- условия эксплуатации продукции, в зависимости от предельной нагрузки по току выбираются изделия с разными соотношениями толщины и ширины;
- поставка продукции осуществляется в бухтах и отрезках, прессованном и тянутом состоянии. Выбор по данным параметрам осуществляется покупателем на основании собственных предпочтений и особенностей монтажа;
- максимально допустимая температура нагрева медного шинопровода составляет 70 градусов. При выборе толщины изделия следует учитывать этот показатель, а также температуру окружающей среды. В таблице допустимых нагрузок приведены данные из расчета температуры воздуха в 25 градусов;
- при наличии финансовых возможностей, лучше выбирать шинопроводы с запасом по токовой нагрузке, с целью избежать выхода изделий из строя при скачках напряжения и коротких замыканиях.
Надежность в эксплуатации медных шин, выполненных в соответствии с требованиями нормативных документов, подтверждена на практике. Качественный материал без посторонних примесей полностью соответствует заявленным характеристикам.
Расчет допустимой силы тока гибкой медной шины
Расчет изолированной медной шины по току нужно проводить в соответствии с рекомендациями производителя, на основании которых выбираются длительно допустимые токи для изолированных шин в поливинилхлоридной изоляции.
Гибкая изолированная шина изготавливается из нескольких слоев тонкого проводника электролитической меди и ПВХ-изоляции с высоким электрическим сопротивлением. Медная гибкая шина применяется для распределения и передачи электроэнергии во всех типах низковольтных установок для всех типов присоединений в случаях, когда нужна повышенная гибкость, эстетика шкафа, а также при работе в коррозионных условий.
Гибкая шина, благодаря своей конструкции, легко принимает требуемую форму и этим самым ускоряется процесс сборки. Гибкая изолированная шина позволяет улучшить внешний вид собираемой схемы в распределительном щите.
Технические характеристики гибкой медной шины:
- проводник — электролитическая медь
- изолятор — материал на основе винила с высоким электрическим сопротивлением
- коэффициент удлинения: 370%
- максимальная рабочая температура: 105°С
- минимальная рабочая температура -25°С
- самогасящийся материал изоляции
- диэлектрическая прочность изоляции: 20 кВ/мм
Допустимая сила тока гибкой медной шины в изоляции определяется по формуле:
?T(°k) = T2 – T1
где: Т1 — температура внутри шкафа, Т2 — температура шины.
При расчете принимается нормальная температура окружающей среды 25 °С.
Источник