Металл для ковки – выбор стали – ковка, сварка, кузнечное дело
Как выбирать марку стали при свободной ручной ковке?
В обязанности кузнеца входят выбор правильной марки стали, которая будет соответствовать задуманному изделию по своим качествам.
Те металлы и сплавы, которые обладают ковкостью и пластичностью, могут быть применены для кузнечных работ.
Данными качествами обладают некоторые марки сталей из чёрных металлов. Их характеристика зависит от её химического состава, то есть от состава химических элементов, из которых основными являются железо и углерод (0,1-1,7%).
Если углерод содержится до 0,1% сталь – мягкая, не только легко куётся, но и хорошо сваривается кузнечным способом. Данный вид в практике называется железом.
Сплав, в котором содержание углерода от 0,1-0,3% и до 1% примесей называется поделочной и она соответствует всем требованиям художественной ковки.
Сталь, имеющая в своём составе углерод от 0,08-0,085% называется конструкционной. При надлежащем нагреве она хорошо куётся. Неплохо закаливается, но плохо сваривается.
Сплав с содержанием углерода от 0,6-1,35% называется сталью инструментальной или высокоуглеродистой. Данный вид требует умелого проведения нагрева. как перед ковкой, так и в процессе самой ковки.
Сталь же, в котором углерод имеется до 2% называется чугуном. Этот сплав не только твёрдый, но и хрупкий и не поддающийся ковке.
В художественной ковке применяются стали обыкновенные углеродистые: ГОСТ 380-71. Они маркируются буквами Ст. А также цифрами от 0-6. Лучшими марками считаются Ст0, Ст1 и Ст2.
Для кованых художественных изделий используются обыкновенные углеродистые марки — ДО и 15. Но это материал дорогостоящий.
При изготовлении слесарных и кузнечных инструментов используются инструментальные углеродистые стали (ГОСТ 1435-74), с содержанием углерода от 0,6-1,4 %.
Инструменты могут изготавливаться также из некоторых марок легированных сталей (ГОСТ 5950-73). В их состав входят не только углерод и железо, но и разные легирующие элементы, такие как кремний, хром, никель, а также вольфрам, молибден и ванадий.
Сталь становится нержавеющей, кислотоупорной благодаря примеси хрома. Он также увеличивает твёрдость и понижает вязкость. Такой сплав должен нагреваться медленно. Он куётся трудно, если содержание хрома превышает 1%.
При содержании ванадия от 12-18% сталь меньше трескается и хорошо куется.
Оснастка и оборудование для гибки профилированным инструментом
интенсивнее изнашиваются пуансоны и матрицы в местах перегиба исходного профиля, в то время, как стойкость периферийных участков намного выше. Тем не менее, инструмент подлежит восстановлению или ремонту (чаще всего изношенные участки наплавляют, а затем шлифуют в размер).
Для гибки пластичных материалов используют пуансоны и матрицы, изготавливаемые из углеродистых инструментальных сталей типа У10 или У12 по ГОСТ 1435. Заготовки из материалов с повышенным значением временного сопротивления деформируют пуансонами и матрицами из легированных инструментальных сталей типа 9ХС или Х12М по ГОСТ 5950.
К числу основных видов оборудования для гибки в штампах относят:
- Листогибочные вертикальные прессы с механическим приводом (в отечественном прессостроении эти машины имеют обозначение И13_ _ причём две последние цифры указывают на номинальное усилие).
- Листогибочные прессы горизонтального исполнения (серия И12_ _).
- Универсальные многоползунковые листогибочные автоматы (серия А72_ _).
Технология гибка профилированным инструментом имеет свои ограничения:
- При штамповке на прессах всегда имеется стадия возвратного хода, когда деформирования не происходит, поэтому производительность снижается;
- На одном комплекте штампов можно изготовить деталь строго определённого типоразмера. Частичным выходом из положения является установка на столе пресса нескольких комплектов разных пуансонов и матриц, для деталей, требующих одинаковое значение рабочего хода ползуна пресса;
- Штампы представляют собой технически сложный инструмент, себестоимость которого довольно высока. Это негативно сказывается на цене конечной продукции;
- При гибке сортовых профилей в местах перепадов поперечного сечения заготовки возможны трещины.
Исходя из этого, гибку непрофилированным инструментом стоит использовать лишь при значительных программах выпуска деталей.
Последовательность операций при гибке листовой стали на заказ
Гибку листовой стали начинают с разработки технологического процесса, который предполагает несколько этапов:
- Анализ конструкции изделия.
- Расчет усилия и работы процесса.
- Подбор типоразмера производственного оборудования.
- Подготовка чертежа исходной заготовки.
- Расчет переходов деформирования.
- Оформление проекта технологической оснастки.
Перед тем как выполнять гибку, листовой материал изучается на соответствие его возможностей заданным требованиям. Этот этап позволяет определить, что металл подходит для штамповки по параметрам, заданным по чертежу готовой детали. Изучаются следующие свойства:
- Пластичность, то есть способность материала деформироваться под заданные условия без разрушения. В том случае, если металл или сплав малопластичен, производится несколько переходов и термическая обработка (отжиг).
- Возможность загиба под нужный угол или радиус без образования трещин в местах деформации.
- Риск искажения заготовки при гибке изделия со сложным контуром, если воздействие происходит с большим давлением.
Если по результатам анализа выясняется, что металл не соответствует требованиям, то принимается одно из следующих решений:
- Выбирается более пластичный металл или сплав.
- Перед тем как производить гибку, материал подвергается термической обработке.
- Заготовка нагревается до нужной температуры.
Технологический процесс формообразования требует некоторых предварительных расчетов, в частности, таких показателей, как угол сгибания, радиус сгибания, угол пружинения.
Радиус гибки листового материала рассчитывают на основании того, насколько пластичен металл, каково соотношение размера и скорости выполнения деформации. Чем ниже минимальный радиус, тем меньше первоначальная толщина листа.
Уменьшение толщины называется утонение, коэффициент которого показывает, насколько меньше станет толщина заготовки. Если при расчетах выясняется, что показатель выше критичного, то используется листовое изделие с большей толщиной.
Минимальный радиус зависит от таких свойств стали, как пластичность, толщина листа, расположение волокон в сплаве.
Если выполнять гибку металла, у которого небольшой радиус гиба, то возможна деформация верхнего слоя металлопроката, в результате чего пострадает качество уже готового изделия.
По этой причине минимальные радиусы следует рассчитывать по наибольшим деформациям крайних частей заготовки, исходя из относительного сужения материала, который видоизменяется.
Пружинение при гибке рассчитывается на основе фактических углов пружинения. При сгибании стали необходимо принимать в расчет и усилия, которые прикладываются для деформации заготовки.
Силовые показатели зависят от того, насколько пластичен металл и какова интенсивность его упрочнения при гибке. Как только прокатка завершается, материал приобретает свойство анизотропии, то есть меняются его физические свойства в зависимости от направления прокатки.
Проще говоря, если сгибать профиль вдоль волокон, то вероятность образования трещины в местах деформации снижается.
Чтобы точность расчетов силовых показателей была высокой, необходимо учесть, как именно профиль будет деформироваться. Возможны два варианта:
- С изгибающим элементом, то есть лист размещается между фиксаторами и сгибается.
- С усилием – на финальной стадии технологического процесса изделие опирается на рабочую поверхность матрицы.
Первая технология применяется, чтобы изготавливать детали с меньшими энергозатратами, вторая – при производстве деталей со сложным контуром.
Гибку листовой стали производят для формообразования практически любых сплавов, независимо от того, присутствуют в них легирующие примеси или нет. В этом заключается основное преимущество технологии перед другими методами обработки металла. Исключение составляют лишь материалы с повышенной хрупкостью и склонностью к деформации.
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Экспресс расчет стоимости заказа
Узнайте предварительную стоимость заказа, отправив нам необходимую информацию:
Создание станка для сгибания листового металла
Согнуть листовой металл в домашних условиях, если нет станка может быть проблематично. Поэтому станок для гибки листового металла можно изготовить его самостоятельно. Для этого потребуются: уголок (80 миллиметров), балка из металла (восемьдесят миллиметров), петли, болты, сварочный аппарат, струбцины, рукояти, стол.
Не забудьте проверить, что все болты хорошо прикручены. Поверните траверсы, согните изделие таким образом, чтобы образовался необходимый вам угол. Данный угол нужно рассчитать заранее, чтобы не отвлекаться на вычисления при осуществлении процедуры.
Если необходимо гнуть жесть на собственноручно сделанном станке, то дадим пару советов. Жесть относится к тонколистовым металлам, поэтому каких-либо проблем с ее изгибанием возникнуть не должно.
Технология гибки на изготовленном в бытовых условиях станке такова, что на нем можно гнуть лишь листы малой толщины.
Чтобы выполнить сгибание толстых металлических листов, требуется применять особые станки, которыми домашние умельцы не располагают.
Станок для гибки металла из толстых листов используется на промышленных предприятиях, производящих разнообразные детали. Стоимость таких устройств соответствующая. Мало какой домашний мастер сможет себе позволить их приобретение. Намного проще сделать станок самостоятельно, благо для бытовых целей гибки тонколистового материала будет вполне достаточно.
Технология и оснастка для гибки непрофилированным инструментом
Этот способ гибки основан на использовании ротационного инструмента. При этом деформирование происходит вследствие пропускания заготовки в зазор между непрерывно вращающимися валками. Валки расположены так, что в результате такого прохода изделие приобретает необходимую кривизну.
Качественная гибка сортового проката – швеллера, двутавра, уголка – возможна только таким способом, поскольку при этом на результат никак не повлияют параметры поперечного сечения заготовки.
Наибольшее распространение приобрели трёхвалковые листо- и сортогибочные машины. Два валка – нижних – являются опорными, в третий – верхний – нажимным. Классификация валковых гибочных машин может быть выполнена по следующим признакам:
- По расположению валков относительно вертикальной оси оборудования – симметричном и асимметричном. При симметрично расположенных валках нажимной размещается строго посредине, а при асимметричной схеме нажимной валок располагается над одним из опорных валков.
- По ширине валков, что определяет технологические возможности оборудования: чем длиннее валки, тем большей ширины лист можно согнуть на данном установке.
- По наличию дополнительных валков, установленных либо до, либо после основных. Такое оборудование выполняет не только гибку, но и последующую правку изделий.
- По относительному расположению рабочих валков, которое может быть в горизонтальной или вертикальной плоскости. Последнее менее удобно, однако иногда целесообразно, поскольку в результате уменьшаются габаритные размеры оборудования в плане.
Поскольку при ротационной гибке усилие прилагается не в точке контакта, а по дуге, то удельная нагрузка на ролики невелика, что, во-первых, увеличивает их стойкость, а, во-вторых, даёт возможность использовать для их изготовления менее дорогие инструментальные стали.
Валковый инструмент, в отличие от штампового – универсальный, поэтому ротационная гибка эффективна при любых программах выпуска конечной продукции.